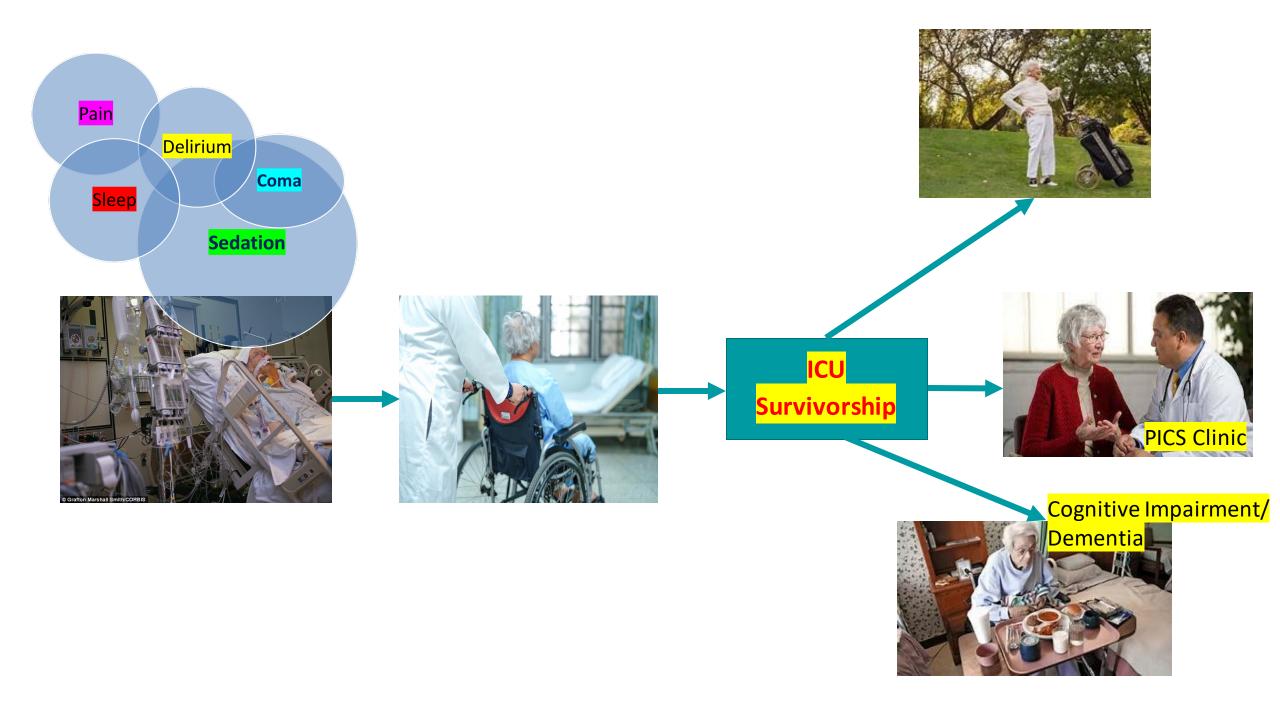
ICU Strategies to Improve Cognitive Function after Critical Illness

John W. Devlin, PharmD, MCCM, FCCP, BCCCP Associate Scientist, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital; Lecturer in Medicine, Harvard Medical School; Professor of Pharmacy, Northeastern University; Boston, MA

BRIGHAM HEALTH

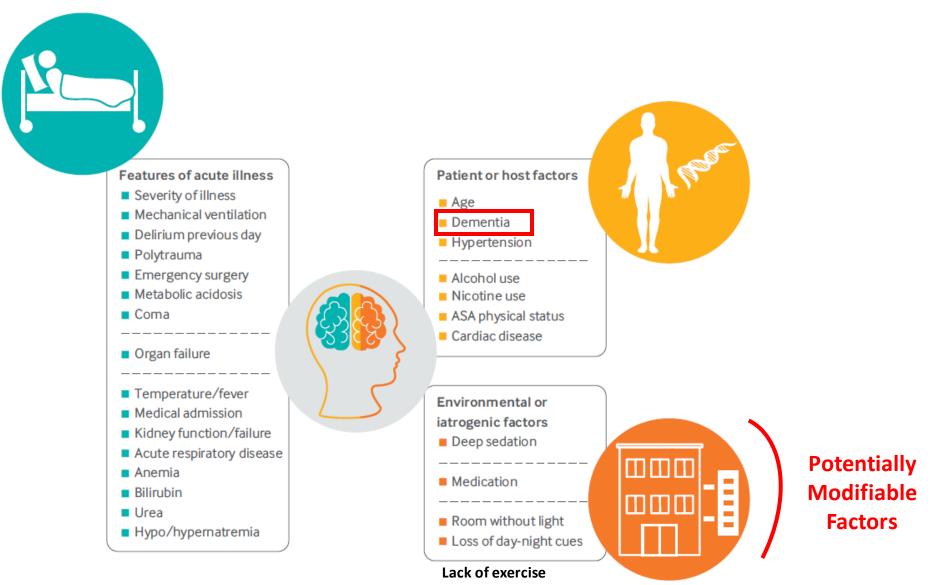


Disclosures

<u>Research Funding</u>: NIA AHRQ Sedana Medical

Consultant:

Noven Pharmaceuticals



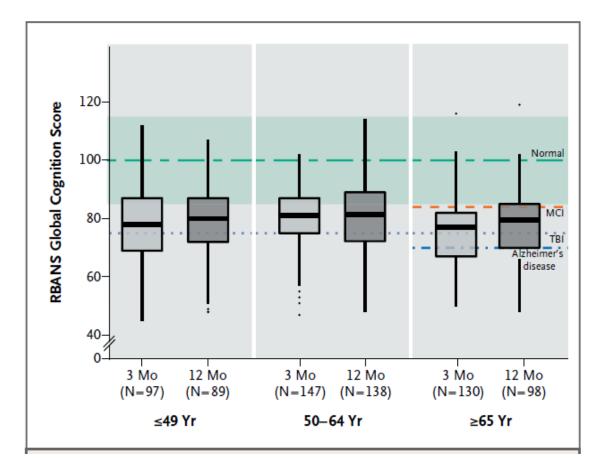
ICU Delirium

• **Prevalence: 20-70%**

- Broad range driven by variability in predisposing and precipitating factors between patients
 - Severity of illness is a key driver of daily occurrence
- Associated with:
 - Substantial distress to patients, families and caregivers
 - Increased short- and long-term mortality
 - Prolonged mechanical ventilation and ICU/hospital length of stay
 - Increased healthcare costs
 - Reduced long-term cognitive decline (dementia)

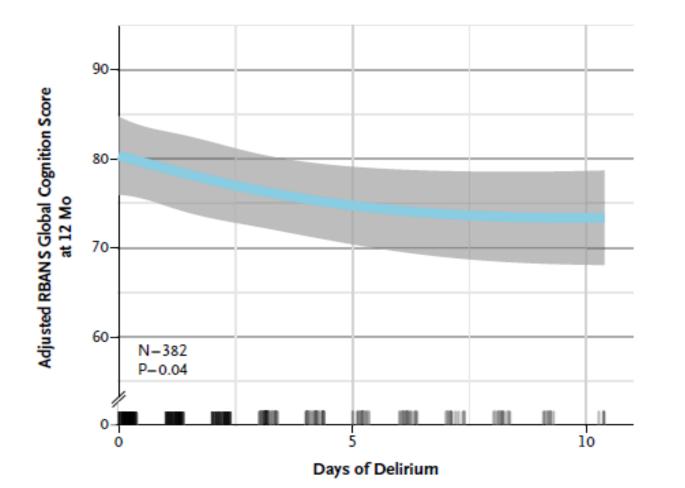
Risk Factors for ICU Delirium

Select Studies of Delirium and Long-Term Cognitive Outcomes in Patients with Critical Illness


Date	Characteristic	Study cohort	Primary outcome	Results
Girard et al, 2010	Prospective cohort	126 medical ICU patients; mechanically ventilated	Cognitive outcome at 3 and 12 months	Duration of delirium independently associated with long term cognitive outcomes
Van den Boogaard et al, 2012	Prospective cohort	1292 patients; 272 with delirium and 1020 without delirium	Cognitive failure questionnaire at 18 months	Duration of delirium associated with long term cognitive impairment
Pandharipande et al, 2013	Prospective cohort	821 patients with respiratory failure or shock in medical or surgical ICU	Cognitive outcome at 3 and 12 months	Days of delirium in hospital associated with worse global cognition and executive function at 3 and 12 months
Wolters et al, 2017	Prospective cohort	567 one year survivors from medical-surgical ICU	Cognitive failures questionnaire at 1 year	Days delirious independently associated with greater self-reported cognitive problems
Mitchell et al, 2018	Prospective cohort	148 medical or surgical ICU survivors	Repeatable Battery for the Assessment of Neuropsychological Status and Trails Making Tests at 3 and 6 months	ICU delirium associated with impaired information processing speed and executive function at 6 months follow-up

ORIGINAL ARTICLE

Long-Term Cognitive Impairment after Critical Illness


N=826 critically ill adults:

- Age = 61 [41-71]
- APACHE II score = 25 [19-31]
- Medical 68%
- Mechanical ventilation = 91%
- Delirium = 74 % for duration of 4 [2-7] days
- Coma = 63% for 3 [2-6] days
- Benzodiazepine = 62%
- Propofol = 52%
- Dexmedetomidine = 13%
- Opioids = 78%

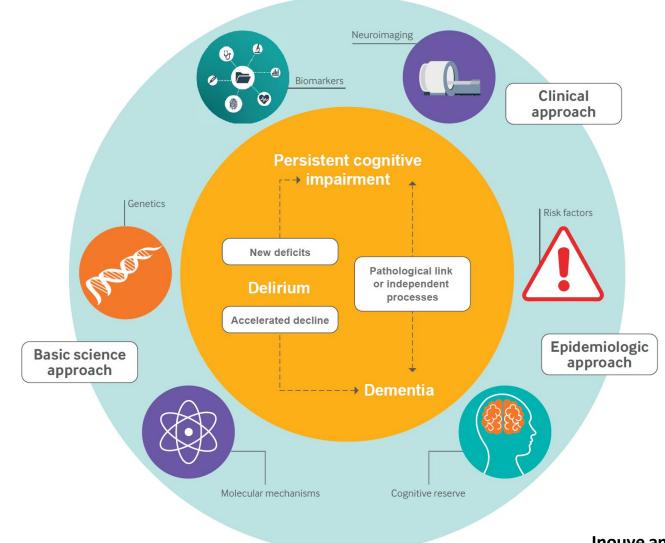
ORIGINAL ARTICLE

Long-Term Cognitive Impairment after Critical Illness

A Longer Duration of Delirium was Independently Associated with Worse Global Cognition at:

- 3 months (P=0.001)

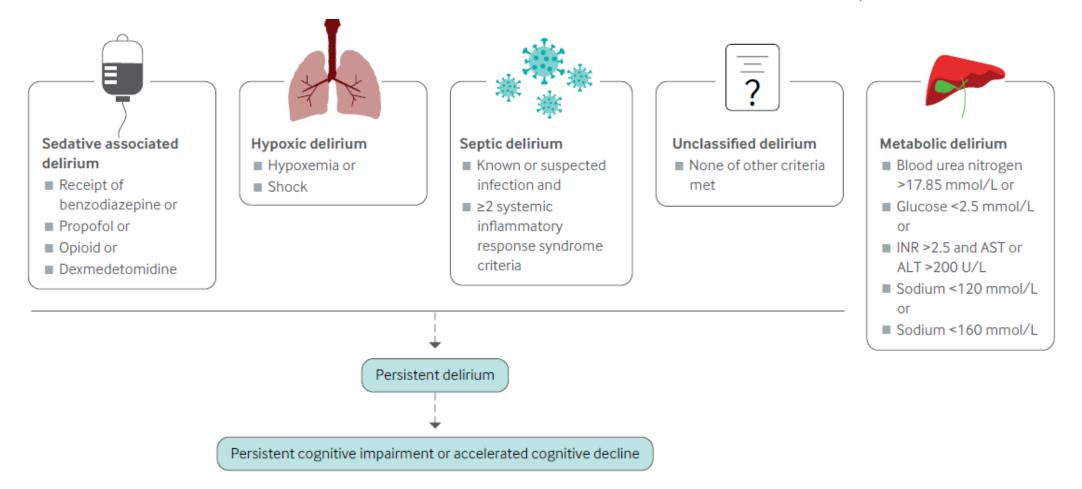
- 12 months (P=0.004)


Pandharipande PP, et al. N Engl J Med 2013; 369:1306

Is there a <u>Causal Link between ICU Delirium and Dementia?</u>

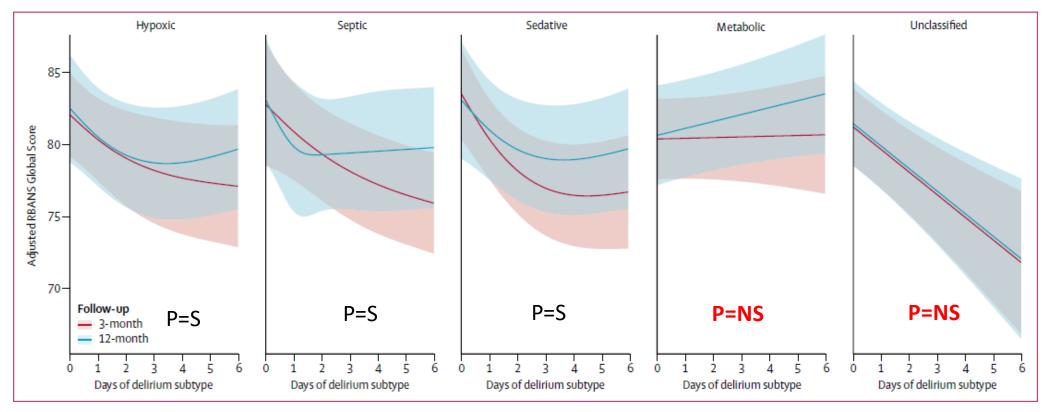
Postulated explanations for an association between delirium and dementia

- 1. Delirium itself <u>causes</u> dementia
- 2. Delirium is a **marker** of vulnerability to dementia
- 3. Delirium is an **intermediate factor** in the development of dementia


Conceptual framework for exploring inter-relationship between delirium and long-term cognitive impairment and between delirium and acceleration of dementia

Inouye and Ferrucci. J Gerontol A Biol Sci Med Sci 2006

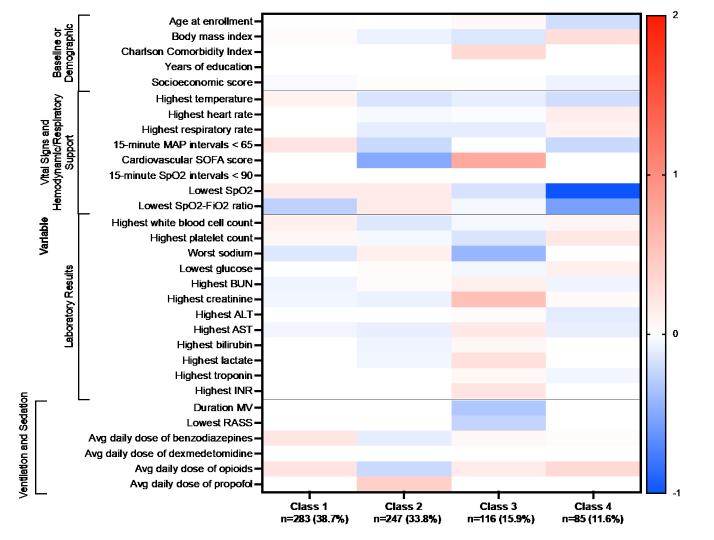
Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study


Timothy D Girard, Jennifer L Thompson, Pratik P Pandharipande, Nathan E Brummel, James C Jackson, Mayur B Patel, Christopher G Hughes, Rameela Chandrasekhar, Brenda T Pun, Leanne M Boehm, Mark R Elstad, Richard B Goodman, Gordon R Bernard, Robert S Dittus, E W Ely

Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study

Adjusted for n=11 relevant baseline and daily variables

Timothy D Girard, Jennifer L Thompson, Pratik P Pandharipande, Nathan E Brummel, James C Jackson, Mayur B Patel, Christopher G Hughes, Rameela Chandrasekhar, Brenda T Pun, Leanne M Boehm, Mark R Elstad, Richard B Goodman, Gordon R Bernard, Robert S Dittus, E W Ely

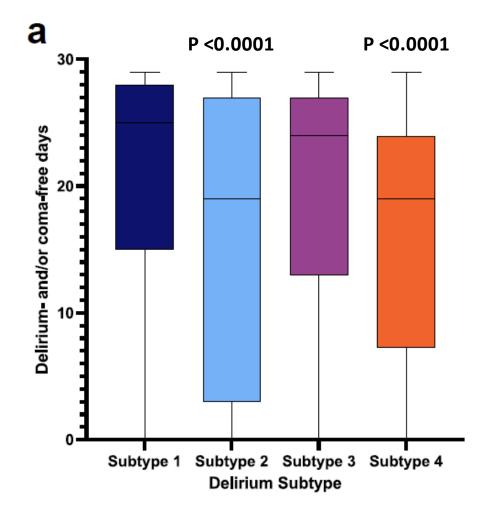

Figure 2: Associations between duration of delirium phenotypes and global cognition scores at 3-month and 12-month follow-up

Each line graph shows the association between the duration of a delirium phenotype (on the x-axis) and global cognitive performance on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at 3 months (red lines, with the 95% CI represented by red shading) and 12 months (blue lines, with the 95% CI represented by blue shading) after hospital discharge.

Data-derived subtypes of delirium during critical illness

Kelly M. Potter,^{a,*} Jason N. Kennedy,^a Chukwudi Onyemekwu,^b Niall T. Prendergast,^b Pratik P. Pandharipande,^{ce} E Wesley Ely,^{d,e,f} Christopher Seymour,^a and Timothy D. Girard^{a,d}

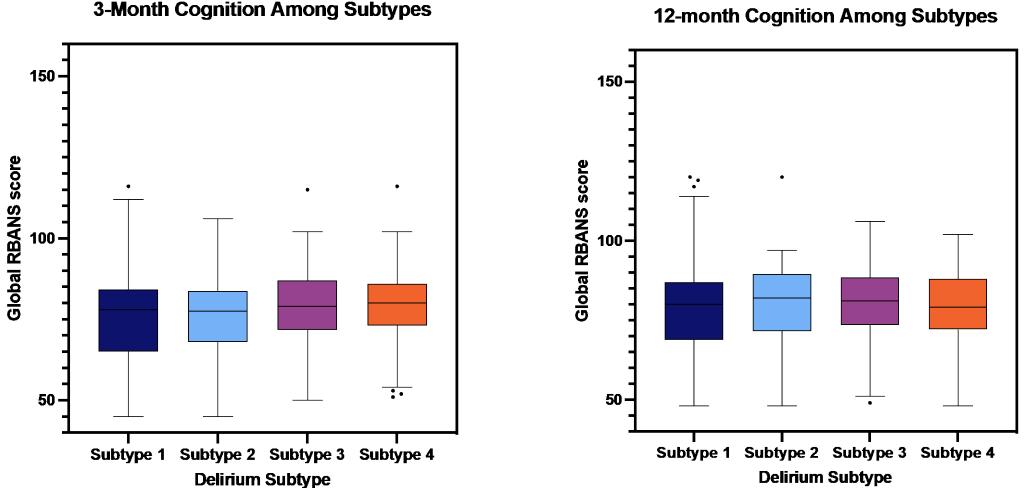
Fig. 2: Heat map of the profile of clinical variables by delirium subtype for the final four-class model. The values of the variables in the figure are scaled to the median (indicated by 0 on the y-axis) and interquartile range. The heat map is shaded according to the value of each variable among the four data-derived delirium subtypes. Values represent a relative increase (red) or decrease (blue) from the median of the variable in


Profile of Clinical Variables by Delirium Subtype

eBioMedicine 2024;100:104942

Delirium Subtype

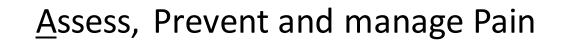
Data-derived subtypes of delirium during critical illness


Kelly M. Potter,^{a,*} Jason N. Kennedy,^a Chukwudi Onyemekwu,^b Niall T. Prendergast,^b Pratik P. Pandharipande,^{c,e} E Wesley Ely,^{d,e,f} Christopher Seymour,^a and Timothy D. Girard^{a,d}

Delirium and Coma-Free Days

Data-derived subtypes of delirium during critical illness

Kelly M. Potter,^{a,*} Jason N. Kennedy,^a Chukwudi Onyemekwu,^b Niall T. Prendergast,^b Pratik P. Pandharipande,^{c,e} E Wesley Ely,^{d,e,f} Christopher Seymour,^a and Timothy D. Girard^{a,d}



eFigure 10. At 3- and 12-month follow up, all data-derived delirium subtypes were affected by clinically significant cognitive impairment. However, the severity of cognitive impairment was not different by subtype (3-month: p=0.26, 12-month: 0.80).

12-month Cognition Among Subtypes

eBioMedicine 2024;100:104942

ABCDEF Bundle Elements

A

Both SAT and SBT

Choice of Analgesia and Sedation

Delirium: Assess, Prevent and Manage

Early Mobility and Exercise

<u>Family Engagement and Empowerment</u>

Vasilevskis EE, et al. *Chest*. 2010;138(5):1224-1233. Davidson JE, et al. *Am Nurse Today*. 2013;8(5):32-38.

Caring for Critically III Patients with the ABCDEF Bundle: Results of the ICU Liberation Collaborative in Over 15,000 Adults

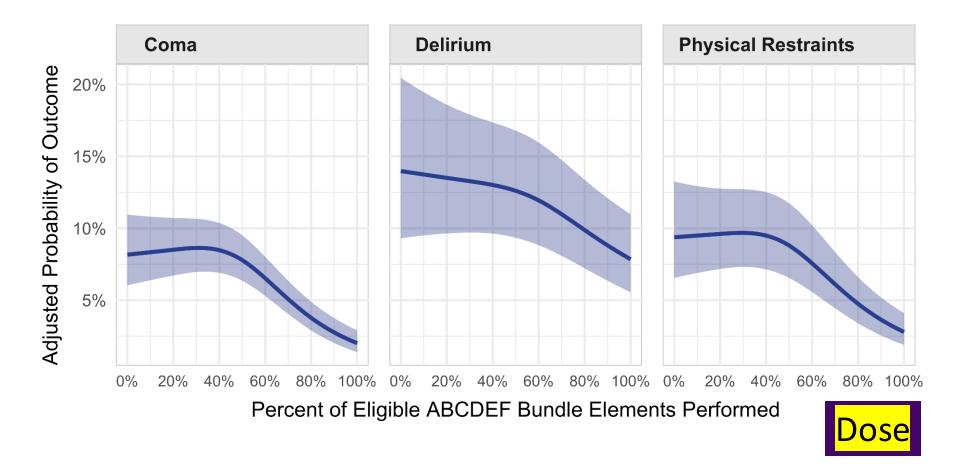
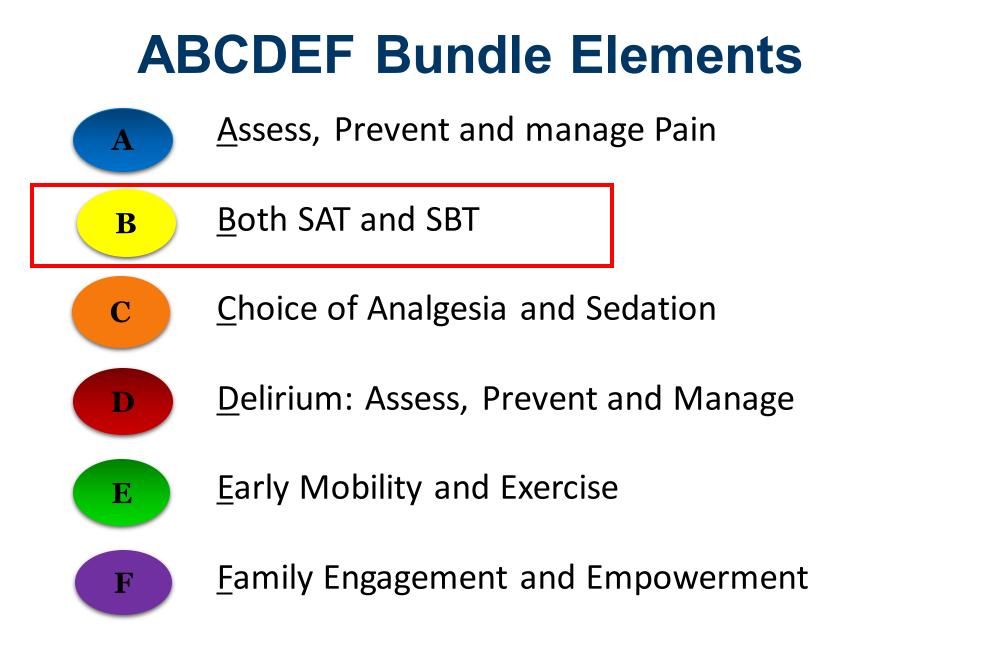

Brenda T. Pun, DNP, RN, FCCM¹; Michele C. Balas, PhD, RN, CCRN-K, FCCM, FAAN^{2,3}; Mary Ann Barnes-Daly, MS, RN, CCRN-K, DC⁴; Jennifer L. Thompson, MPH⁵; J. Matthew Aldrich, MD⁶; Juliana Barr, MD, FCCM^{7,8}; Diane Byrum MSN, RN, CCRN-K, CCNS, FCCM⁹; Shannon S. Carson, MD¹⁰; John W. Devlin, PharmD, FCCM¹¹; Heidi J. Engel, PT, DPT¹²; Cheryl L. Esbrook, OTR/L, BCPR¹³; Ken D. Hargett, MHA, FAARC, FCCM14; Lori Harmon, RRT, MBA, CPHQ15; Christina Hielsberg, MA15; James C. Jackson, PsyD¹; Tamra L. Kelly, BS, RRT, MHA⁴; Vishakha Kumar, MD, MBA¹⁵; Lawson Millner, RRT¹⁶; Alexandra Morse, PharmD⁴; Christiane S. Perme, PT, CCS, FCCM¹⁴; Patricia J. Posa, BSN, MSA, CCRN-K¹⁷; Kathleen A. Puntillo, PhD, RN, FCCM, FAAN¹⁸; William D. Schweickert, MD¹⁹; Joanna L. Stollings, PharmD, FCCM²⁰; Alai Tan, PhD²; Lucy D'Agostino McGowan, PhD²¹; E. Wesley Ely, MD, MPH, FCCM^{1,22}

TABLE 2. Outcomes for Patients With Complete (vs Incomplete) ABCDEF Bundle Performance: Data are Adjusted Hazard Ratios (AHRs) and Adjusted Odds Ratios (AORs)

Outcomes	Complete Bundle Performance	<i>p</i> Value
Patient-Related Outcomes	AHR (95% CI)	
ICU discharge ^a	1.17 (1.05–1.30)	< 0.004
Hospital discharge ^b	1.19 (1.01–1.40)	< 0.033
Death	0.32 (0.17-0.62)	< 0.001
Symptom-Related Outcomes ^d	AOR (95%CI)	
Mechanical ventilation	0.28 (0.22-0.36)	< 0.0001
Coma	0.35 (0.22-0.56)	< 0.0001
Delirium	0.60 (0.49–0.72)	< 0.0001
Significant pain	1.03 (0.88–1.21)	0.7000
Physical restraints	0.37 (0.30-0.46)	< 0.0001
System-Related Outcomes	Adjusted OR (95%CI)	
ICU readmission ^e	0.54 (037–0.79)	< 0.001
Discharge destination ^f	0.64 (0.51–0.80)	< 0.001

Pun, B; Balas, M; Barnes-Daly, MA et al. Crit Care Med 2019

Results: Symptom-Related Outcomes


Pun B, et al. Crit Care Med. 2019; 47:3-14

19

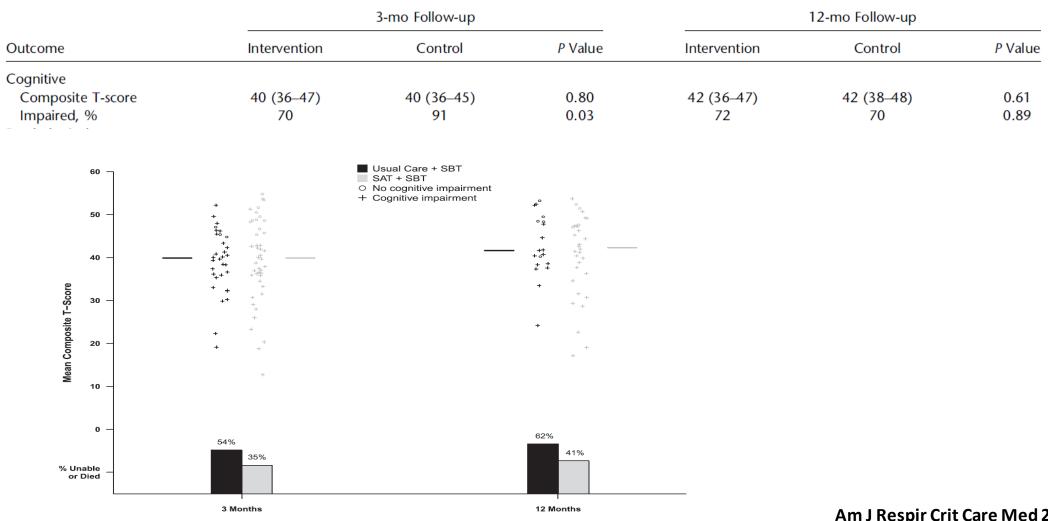
Does Daily Use of the ABCDEF Bundle Improve Long-Term Cognitive Cognition?

Does Daily Use of the ABCDEF Bundle Improve Long-Term Cognitive Cognition?

Not Sure Yet.....

Vasilevskis EE, et al. *Chest*. 2010;138(5):1224-1233. Davidson JE, et al. *Am Nurse Today*. 2013;8(5):32-38. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial

Timothy D Girard, John P Kress, Barry D Fuchs, Jason W W Thomason, William D Schweickert, Brenda T Pun, Darren B Taichman, Jan G Dunn, Anne S Pohlman, Paul A Kinniry, James C Jackson, Angelo E Canonico, Richard W Light, Ayumi K Shintani, Jennifer L Thompson, Sharon M Gordon, Jesse B Hall, Robert S Dittus, Gordon R Bernard, E Wesley Ely


	Outcome*	SBT	SAT+SBT	P-value
Ventilato	or-free days	12	15	0.02
Time-to-I	Event, days			
Suc	cessful extubation, days	7.0	5	0.05
ICU discharge, days		13	9	0.02
Hospital discharge, days		19	15	0.04
Death at 1 year, n (%)		97 (58%)	74 (44%)	0.01
Days of b	Days of brain dysfunction			
Con	na	3.0	2.0	0.002
Deli	irium	2.0	2.0	0.50

Girard TD, et al. Lancet. 2008;371:126-134.

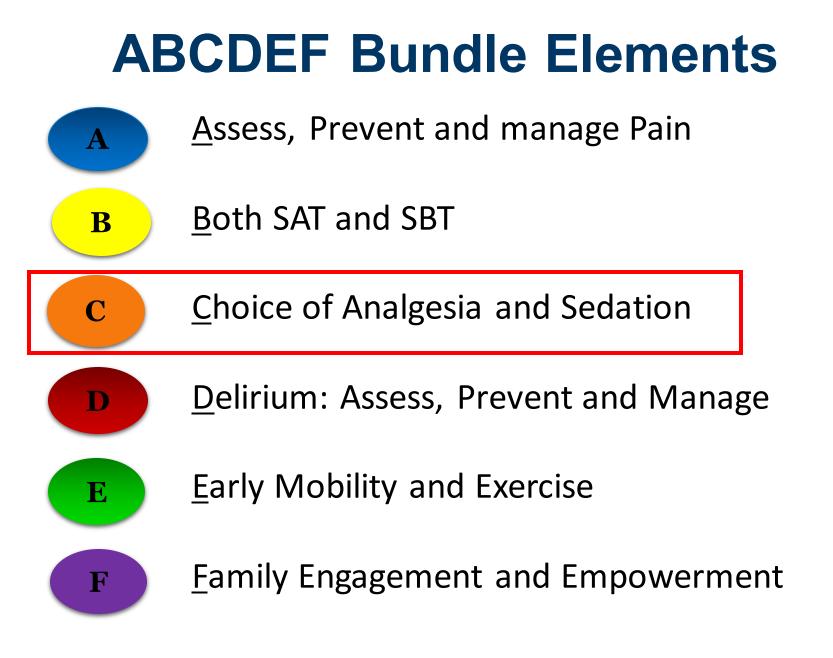
Long-term Cognitive and Psychological Outcomes in the Awakening and Breathing Controlled Trial

James C. Jackson^{1,2,3,4}, Timothy D. Girard^{1,2,5}, Sharon M. Gordon^{2,5}, Jennifer L. Thompson⁶, Ayumi K. Shintani⁶, Jason W. W. Thomason⁷, Brenda T. Pun¹, Angelo E. Canonico⁸, Janet G. Dunn⁹, Gordon R. Bernard¹, Robert S. Dittus^{2,5}, and E. Wesley Ely^{1,2,6}

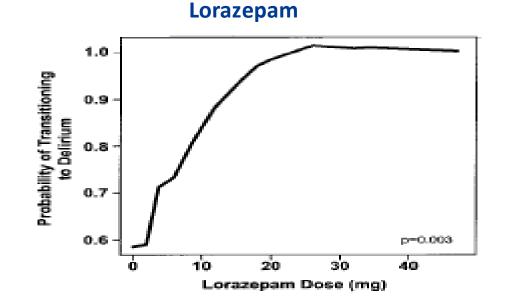
TABLE 3. LONG-TERM OUTCOMES

Follow–Up Time

ORIGINAL ARTICLE

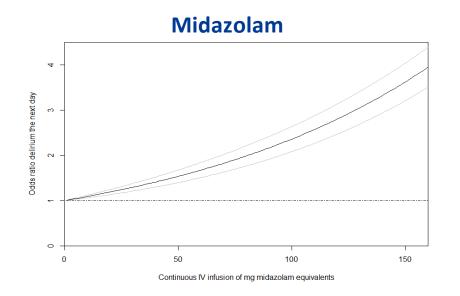

Nonsedation or Light Sedation in Critically Ill, Mechanically Ventilated Patients

	Non-sedation group No sedation; IVP opioid prn for pain/agitation Goal RASS=0 + ABCDE bundle N=354	Sedation group Continuous sedation to reach RASS=-3 to -2 0-48hrs = propofol; ≥ 48 hrs midazolam + ABCDE bundle N=356	Difference
Days free from coma/delirium within 28 days, median [IQR]	27 [21-28]	26 [22-28]	NS


Evaluation of 6 month Post-ICU Cognition Between Non-Sedation and Sedation Groups

	Non-sedation group	Sedation group	Difference
Cognitive Function* %	N=42	N=47	
Occurrence of Delirium in the ICU	29 (69%)	45 (96%)	0.002
Duration of Delirium in the ICU	1 [0,6] days	5 [2, 11] days	< 0.001
Severe cognitive impairment	16 (38%)	17 (26%)	NS

*baseline demographic parameters not different between two study groups % only 1 of the 8 Study Centers



Vasilevskis EE, et al. *Chest*. 2010;138(5):1224-1233. Davidson JE, et al. *Am Nurse Today*. 2013;8(5):32-38.

OR = 1.20 (95% CI 1.1, 1.4) *per every 1mg of lorazepam

Pandharipande P, et al Anesthesiology 2006; 104:21

Zaal I, Devlin JW et al. Intensive Care 2015; 41:2130

OR = 1.04 (95% CI 1.02, 1.05) *per every 5mg of midazolam

3 mg/hr = 72mg/24 hours

72/5 = 14.4 x 4% = 57.6% chance of having delirium the next day.

Choice of Sedative

Recommendation:

We **suggest** using **either** propofol or dexmedetomidine over benzodiazepines for sedation in critically ill mechanically ventilated adults (conditional recommendation, low quality of evidence). ORIGINAL ARTICLE

Dexmedetomidine or Propofol for Sedation in Mechanically Ventilated Adults with Sepsis

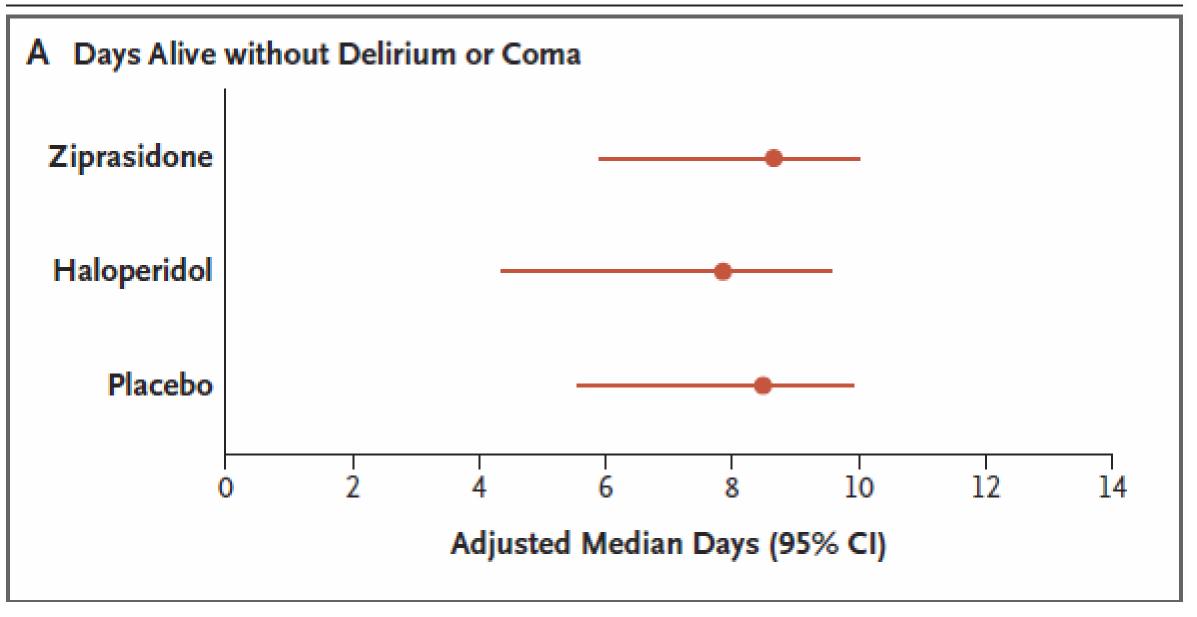
	Dexmedetomidine N=214	Propofol N=208	Difference
APACHE-II	27[21,32]	27[22,32]	
Medical	64%	65%	
Moderate-Severe ARDS	26%	29%	
Outcomes			
Days without delirium or coma at 14 d* median [95% CI]	10.7 [8.5, 12.5]	10.8 [8.7, 12.6]	NS
Telephone Interview for Cognitive Status (TICS) at 6 mo.	40.9 [33.6, 47.1]	41.4 [34.0, 47.3]	NS
RASS score while receiving study sedation	-2 [-3 to -1]	- 1.9 [-3 to -0.9]	NS
Daily adherence to all ABCDE bundle elements	86%	85%	NS

*Multivariable adjustment for n=16 variables

Vasilevskis EE, et al. *Chest*. 2010;138(5):1224-1233. Davidson JE, et al. *Am Nurse Today*. 2013;8(5):32-38.

Antipsychotic vs. None (Treatment)

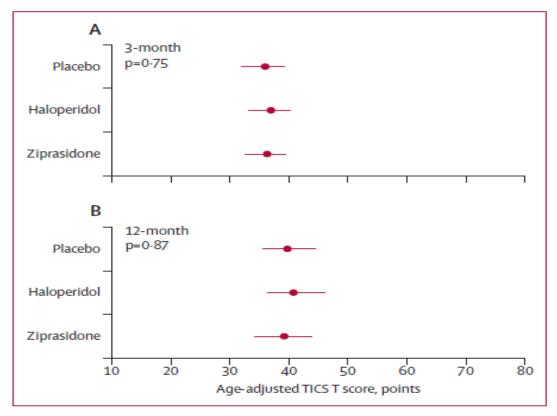
Rationale, includes:


- No benefit for any critical outcomes
- Not Routinely (vs. Never) given that patients with fear, anxiety or agitation not-related to pain may still benefit from a shortcourse of antipsychotic therapy
- Unnecessary continuation causes significant morbidity & cost

Recommendation:

We **suggest NOT** <u>routinely</u> using haloperidol and atypical antipsychotic to treat delirium (conditional recommendation, low quality of evidence).

Haloperidol and Ziprasidone for Treatment of Delirium in Critical Illness


T.D. Girard, M.C. Exline, S.S. Carson, C.L. Hough, P. Rock, M.N. Gong,
I.S. Douglas, A. Malhotra, R.L. Owens, D.J. Feinstein, B. Khan, M.A. Pisani,
R.C. Hyzy, G.A. Schmidt, W.D. Schweickert, R.D. Hite, D.L. Bowton, A.L. Masica,
J.L. Thompson, R. Chandrasekhar, B.T. Pun, C. Strength, L.M. Boehm, J.C. Jackson,
P.P. Pandharipande, N.E. Brummel, C.G. Hughes, M.B. Patel, J.L. Stollings,
G.R. Bernard, R.S. Dittus, and E.W. Ely, for the MIND-USA Investigators*

Girard TD et al. N Engl J Med 2018; 379:2506

Long-term outcomes after treatment of delirium during critical illness with antipsychotics (MIND-USA): a randomised, placebo-controlled, phase 3 trial

Matthew F Mart, Leanne M Boehm, Amy L Kiehl, Michelle N Gong, Atul Malhotra, Robert L Owens, Babar A Khan, Margaret A Pisani, Gregory A Schmidt, R Duncan Hite, Matthew C Exline, Shannon S Carson, Catherine L Hough, Peter Rock, Ivor S Douglas, Daniel J Feinstein, Robert C Hyzy, William D Schweickert, David L Bowton, Andrew Masica, Onur M Orun, Rameela Raman, Brenda T Pun, Cayce Strength, Mark L Rolfsen, Pratik P Pandharipande, Nathan E Brummel, Christopher G Hughes, Mayur B Patel, Joanna L Stollings, E Wesley Ely, James C Jackson, Timothy D Girard

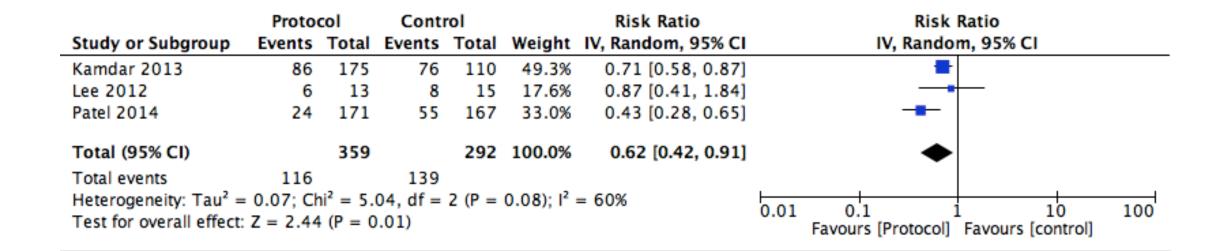
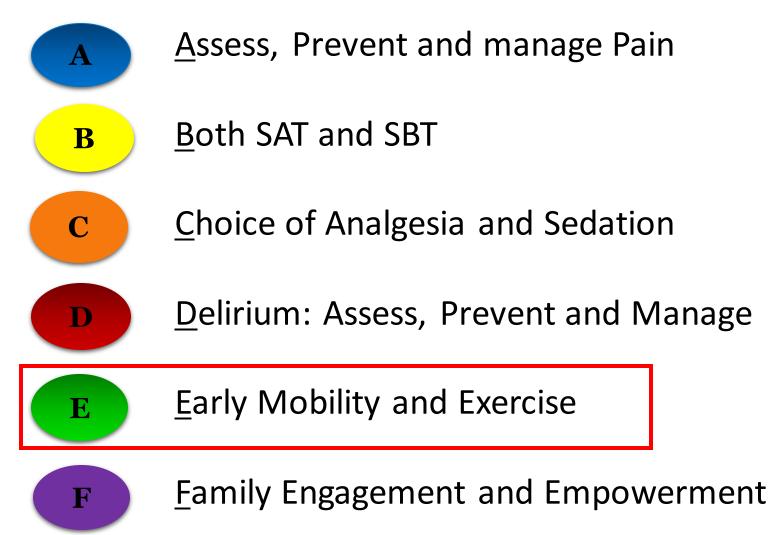


Figure 2: Long-term cognition by treatment group

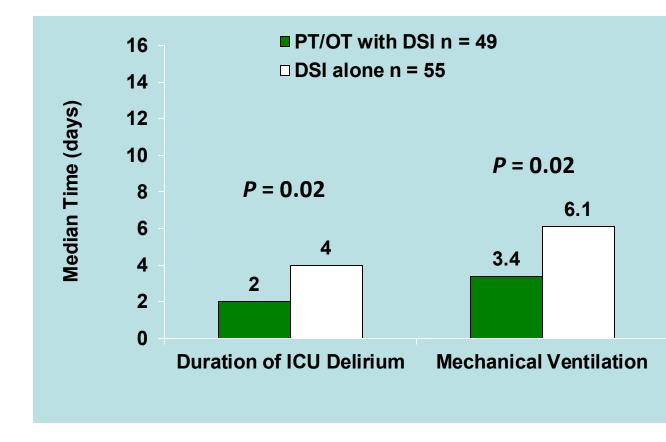
Global cognition, as measured by TICS T score, at 3-month (A) and 12-month (B) follow-up after critically ill patients with delirium were treated with placebo, haloperidol, or ziprasidone. Data are adjusted median (95% CI). Treatment effects were estimated after adjusting for pre-randomisation predictors of cognition, including age, sex, race, baseline frailty, level of education, and baseline score on the short IQCODE. IQCODE=Informant Questionnaire on Cognitive Decline in the Elderly. TICS=Telephone Interview for Cognitive Status.

Lancet Respir Med 2014;12:599-607

Evidence: Sleep Promoting Protocol



Delirium prevalence: RR: 0.62; 95% CI, 0.42 to 0.91 (for n=3 before-after studies)


Recommendation:

We suggest using a sleep-promoting, multicomponent protocol in critically ill adults (conditional recommendation, low quality evidence).

ABCDEF Bundle Elements

Early Exercise and Mobility

Schweickert WD, et al. *Lancet*. 2009;373(9678):1874-1882.

Early Rehabilitation and Mobilization

We **suggest** performing rehabilitation or mobilization in critically ill adults (conditional recommendation, low quality evidence).

Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial

Bhakti K Patel, Krysta S Wolfe, Shruti B Patel, Karen C Dugan, Cheryl L Esbrook, Amy J Pawlik, Megan Stulberg, Crystal Kemple, Megan Teele, Erin Zeleny, Donald Hedeker, Anne S Pohlman, Vineet M Arora, Jesse B Hall, John P Kress

		Isual care group n=99)	Intervention group (n=99)	p value
Time from intubation to first PT or OT session (days)		4.7 (3.3-6.8)	1.1 (0.8–2.0)	<0.0001
Number of daily therapy sess	sions			
Mechanical ventilation		0 (0–0)	2 (1–3)	<0.0001
ICU admission		0 (0–1)	4 (2–6)	<0.001
During hospitalisation		2 (1–4)	5 (3–9)	<0.0001
Delirium duration in ICU (days)		1 (0-3)	0 (0–2)	0.0050
Proportion of ICU days in delirium		25% (0–55·6)	0% (0–28.6)	0.0011
	Usual care grou (n=99)	p Intervention group (n=99)	Absolute difference	p value
Primary outcome				
Cognitive impairment at 1 year	43 (43%)	24 (24%)	-19·2%(-32·1 to -6.3)	0.0043
MoCA* score at 1 year	23 (21–26)	26 (24–28)	3 (1 to 4)	0.0001

Lancet Respir Med 2023;11:563-72

Conclusions

- ICU delirium (and its duration) is strongly associated with long-term cognitive impairment/dementia:
 - Causal relationship not established
 - Patients with baseline dementia excluded from most studies
 - Mechanisms not well-investigated
- While the ABCDEF bundle reduces ICU delirium, unclear if it improves long-term cognition
- Only one ICU intervention (mobility) shown to reduce ICU delirium has been rigorously shown to improve long-term cognition