

EXPANDING THE HORIZONS OF DELIRIUM PREDICTION

By Leveraging Artificial Intelligence

Heidi Lindroth PhD RN FAAN Nurse Scientist, MICU Nurse Clinician Mayo Clinic

November 21st, 2024 NIDUS Webinar

MY DISCLOSURES

National Institutes on Health, National Institute on Aging

- 1K23AG076662-01, Harnessing the Power of Technology to Transform Delirium Severity Measurement in the ICU.
- 1 L30 AG074162-01, Harnessing the Power of Patient Partnerships and Technology to Transform Delirium Prevention

American Thoracic Society

• RP-2021-91, Harnessing the Power of Technology to Transform Delirium Severity Measurement in the ICU

Mayo Clinic Internal

Critical Care Research Committee, Development, testing, and refining of BrainSaver automated alert algorithm

Mayo Clinic Ventures - Disclosures

- DR24-925 Automated Digital Marker for Delirium Severity: Lindroth, Herasevich, Nalaie, Pickering
- DR24-297 Computer Vision Informed Acute Care: Pickering, Herasevich, Lindroth, Nalaie
- DR24-309 Computer Vision Informed Care Ambient Environment: Herasevich, Lindroth, Nalaie, Pickering

WHY AI?

Altered States on ICU

Visual hallucinations described by patients on intensive care

Martyn Stones and Janice Sharp

-

CURRENT DELIRIUM PREDICTION

Machine learning is...

- Fundamental process of AI
- Algorithm based
- Different types
 - Supervised, Unsupervised, Reinforcement

Premise		
Past	Future	
X = Y	X = Y	

Artificial Intelligence

Machine Learning

Deep Learning

Machine Learning Different Ways of Learning

Supervised

- Labeled data (we know the variables going in)
- Transparent, explainable
- Human-informed and guided
- Types/Examples:
 - Logistic & linear regression, decision-trees (random forest), support vector machine, neural networks, gradient descent. Etc.

Existing Delirium Prediction Models

Unsupervised

- Unlabeled data (we do not know variables)
- Find hidden structures or patterns within data
- Considered "Black Box"
- Types/Examples:
 - Clustering, more advanced neural nets
 - Convolutional Neural Nets, Recurrent
 Neural nets, transformers. Etc.

Future Potential to Unlock Hidden Potential?

2021 Mayo Foundation for Medical Education and Fesearch | slide-5

MACHINE LEARNING

Reinforcement Learning

- Decision-making
- Repeated trial & error, learns through rewards
- Learn series of actions (similar to Bayesian)
- Human-in-the-loop

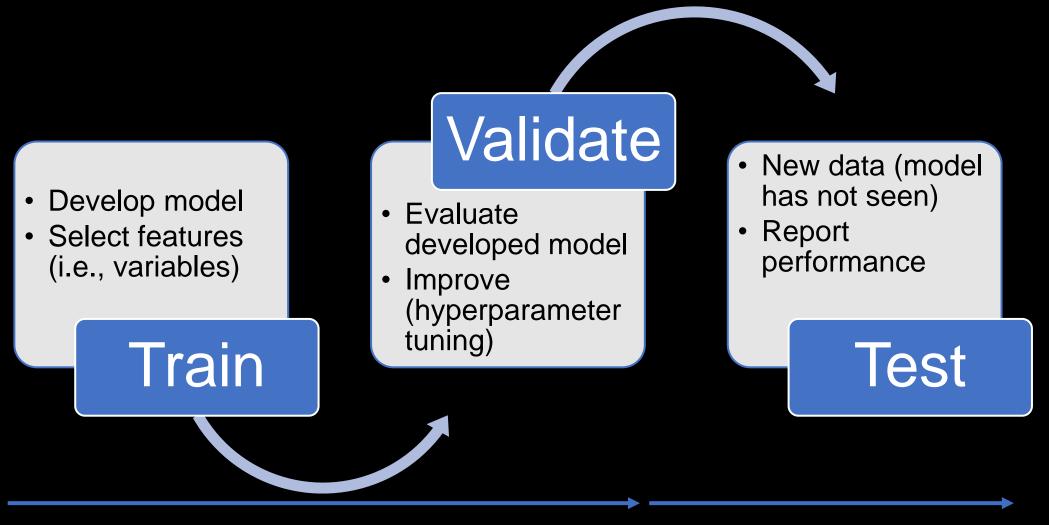
Has been used to understand clinician decision-making

(inverse)

Need to Explore how to apply in delirium prediction

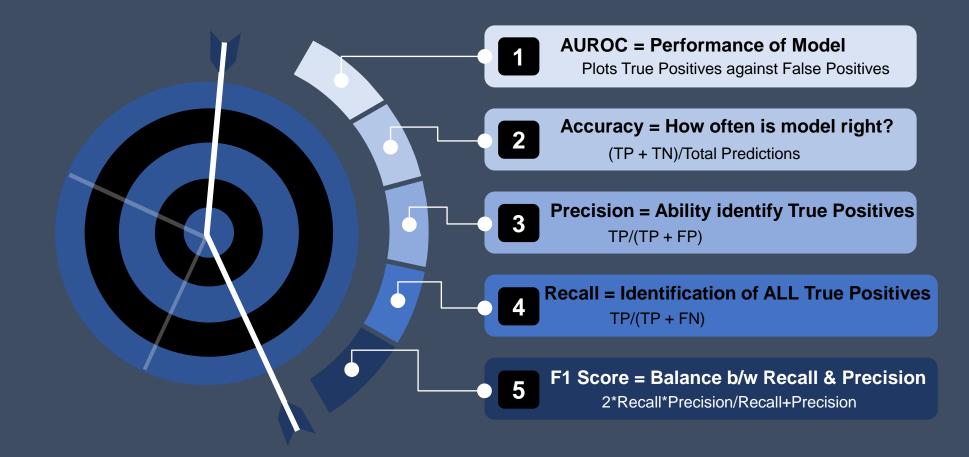
DATA TYPES

Structured


Defined, searchable EHR flowsheet data Relational Database/Datamart

Unstructured

Data types vary Text, images, waveform Data Lakes


MODEL DEVELOPMENT & TESTING

80% of Dataset

20% of Dataset

Evaluating Performance of ML Models

Confusion Matrix	Positive	Negative
Positive	True Positive (TP)	False Positive (FP)
Negative	False Negative (FN)	True Negative (TN)

How is Supervised ML different from regular Logistic Regression?

Terminology

Variables vs Features/Labels

Intent

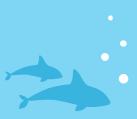
Examining relationships vs Finding the best performing model

Problem Being Solved

Practice or Research? Exploratory, hypothesis generating?

WHAT IS THE SAME?

Inform Model

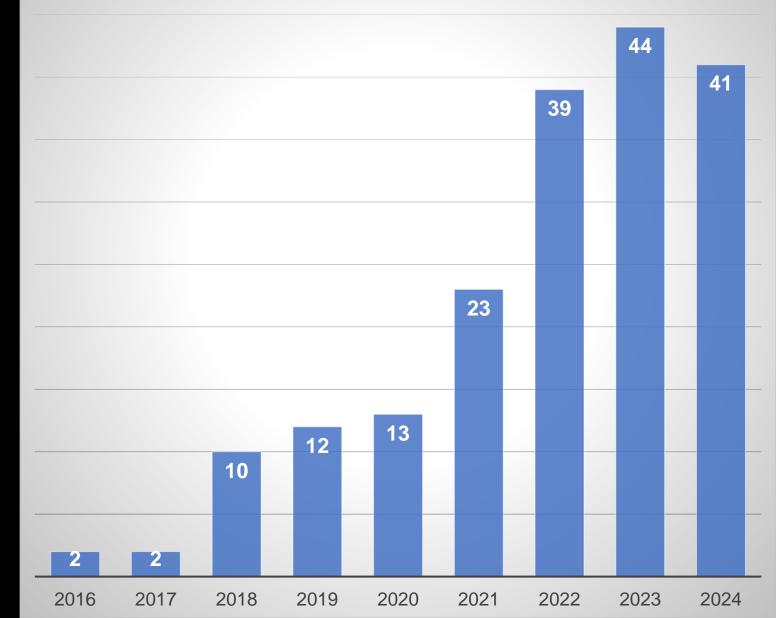

Our assumptions continue to inform

modeling

Hidden potential

Thinking outside of our assumptions Allow assistance in identifying patterns in data that we cannot see because of our assumptions

۰.



WHERE ARE WE NOW?

- Search terms "Delirium" AND "Machine Learning"
- 3 systematic reviews
 - Postoperative (PMID 39395856):
 Random forest most
 frequently used
 - Pooled AUC 0.792
 - Ensemble models perform better (AUC 0.805)
 - All Adult Settings (PMID 35922015) :
 - Pooled performance AUROC:
 0.89
 - All Settings (PMID 34373042)
 Random forest
 AUROC 0.79-0.91

PubMed Search

How could AI improve delirium prediction?

02

0 0 0 0 0 0 0 0 0

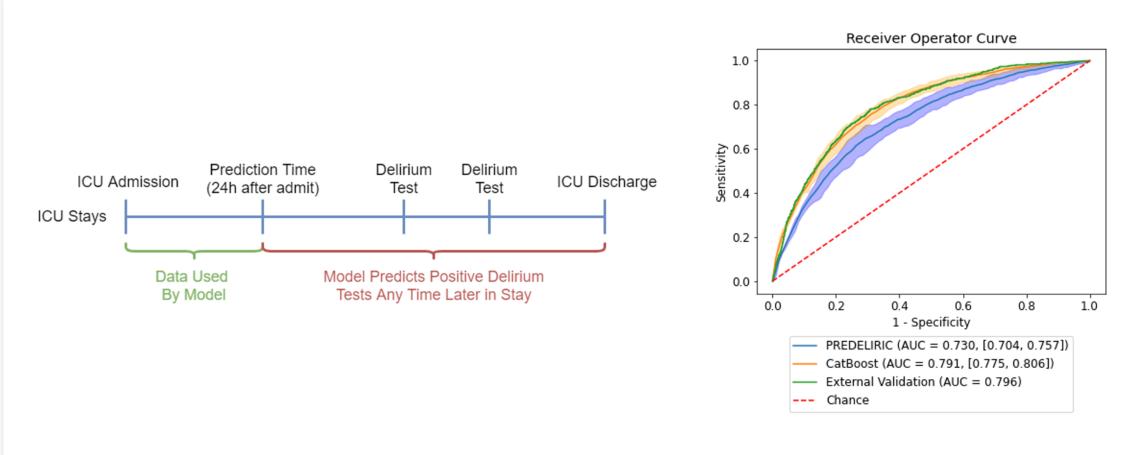
 \overrightarrow{x}

Dynamic Modeling

Incorporate realtime information, adapt to changing circumstances

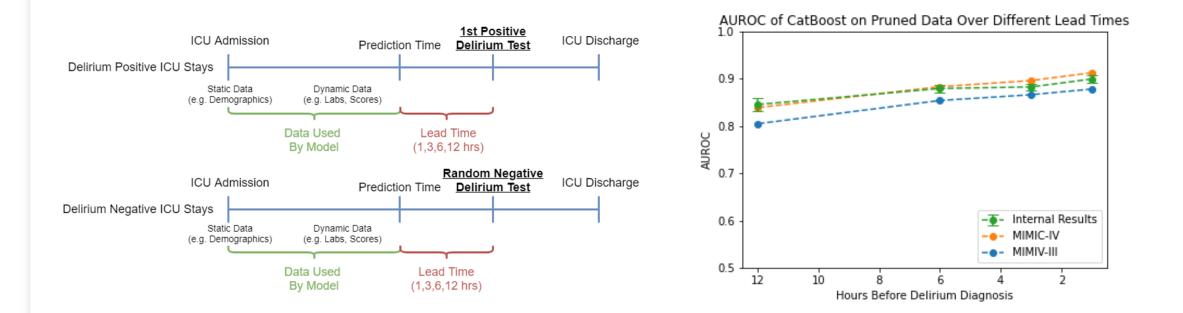
04

05


Structured, unstructured, wearables, environmental, genetic, lifestyle, ambient sensing, etc.

Improve Screening for Studies

More precise, efficient, and dynamic screening for eligibility


What else?

Passive digital markers, detection, prognosis, ???

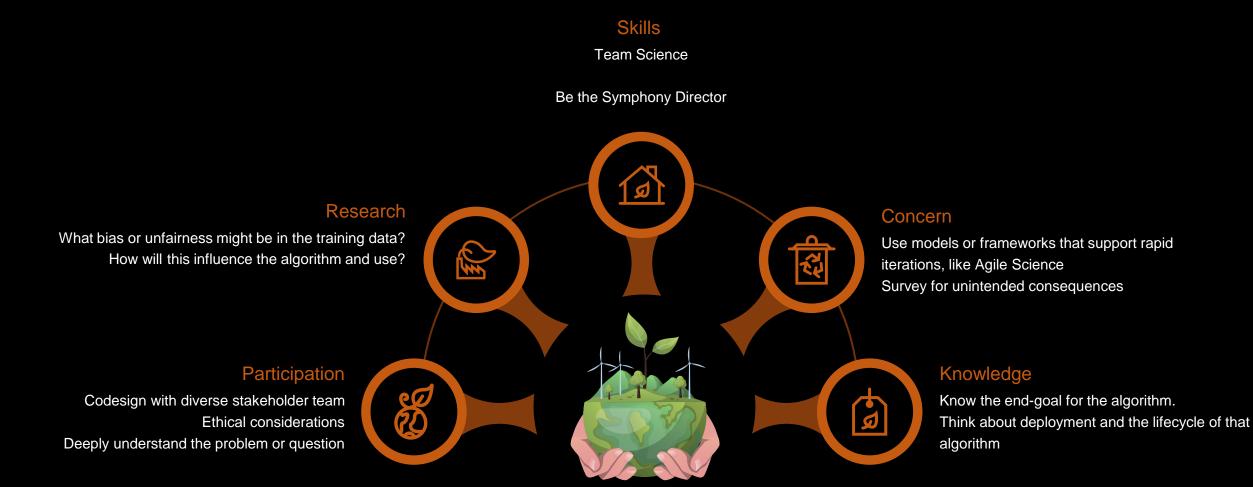
Previous Work: Static Models

Kirby D. Gong, Ryan Lu, Teya S. Bergamaschi, Akaash Sanyal, Joanna Guo, Han B. Kim, Hieu T. Nguyen, Joseph L. Greenstein, Raimond L. Winslow, Robert D. Stevens; Predicting Intensive Care Delirium with Machine Learning: Model Development and External Validation. *Anesthesiology*2023; 138:299–311 doi: https://doi.org/10.1097/ALN.00000000004478

Previous Work: Dynamic Models

Kirby D. Gong, Ryan Lu, Teya S. Bergamaschi, Akaash Sanyal, Joanna Guo, Han B. Kim, Hieu T. Nguyen, Joseph L. Greenstein, Raimond L. Winslow, Robert D. Stevens; Predicting Intensive Care Delirium with Machine Learning: Model Development and External Validation. *Anesthesiology*2023; 138:299–311 doi: https://doi.org/10.1097/ALN.00000000004478

WHAT COULD WE DO?


- Are we predicting the risk of delirium? Low, medium, high risk?
- Are we predicting the presence of delirium? Diagnostic focused
- Are we predicting the prognosis? The likely course and outcomes for this individual?
- Are we predicting treatment response?
- Are we predicting disease progression?

Mohamed Khalifa, Mona Albadawy,

Artificial Intelligence for Clinical Prediction: Exploring Key Domains and Essential Functions, Computer Methods and Programs in Biomedicine Update, Volume 5, 2024, 100148, ISSN 2666-9900, https://doi.org/10.1016/j.cmpbup.2024.100148.

(https://www.sciencedirect.com/science/article/pii/S2666990024000156)

Considerations for the Lifecycle of an Algorithm

QUESTIONS AT THE END ©

Thanks for listening!

Please email me with questions or if you want to chat!

Lindroth.Heidi@mayo.edu

