Sleep and Delirium: Physiologic and Clinical Implications

Presenters: Ben Palanca	, MD, PhD, MSCI and	l Melissa Knauert, MD, PhD

ection
bjectives (Ben Palanca)
• Appreciate the importance of high-quality sleep in maintaining normal physiologic and cognitive
functions
• Understand the electroencephalographic and phenotypical changes associated with delirium that
implicate disrupted sleep processes
Appreciate associations between disrupted sleep and delirium risk
• Consider pharmacologic and non-pharmacologic approaches for modulating sleep structure in future
delirium research
elirium: Significance and Impact
• Costly, common, cognitive decline?, poor prognostic sign (high mortality, morbidity, and poorer
longer term outcomes)
elirium: Core Features
Awareness, attention, cognition, fluctuating
omparisons of Delirium and Sleep Deprivation
• Delirium (CAM-S)→ long CAM categories
• Sleep deprivation → contains a very similar list to the CAM
easons to Study Sleep in Elucidating Delirium Pathophysiology
Critical for maintain consciousness and cognition
• Common
Incompletely understood
Clinically relevant
Modifiable
<u>aportance of Sleep Health with Modifiers Across Societal Levels</u>
• Societal Level: globalization, 24/7 society, technology, policy, discrimination, geography,
environment
• Social Level: neighborhood, work, family, culture, social networks, socioeconomic status, safety
Individual Level: genes, age, sex/gender, race/ethnicity, beliefs, behaviors, emotions
directionality of Sleep and Immunity: Likely Contributor to Delirium Pathogenesis
• Strong immune activation could have disturbed sleep and fatigue
 Abnormal sleep can impact the immune system in a bad way Systemic inflammatory mediators
• Systemic inflammatory mediators ormal Overnight Sleep Macrostructure
 Hypnograph across sleep states over the course of the night
 REM vs. Non-REM sleep
 Cycles are about 60-90 minutes long
 N1: Transition from wakefulness to sleep ~5% TST (total sleep time)
 N2: Bulk of sleep, 50% TST
 N3: Slow Wave Sleep, 20% TST (declines with age)
 REM: rapid eye movement sleep ~25% TST
ates of Sleep May Aid in Clearance of AD Pathology
Glympahtic system hypothesized to clear out
eep: Microstructure and Physiologic Roles
Defined by different EEG markers
 N2 sleep → sleep spindles (learning and memory, facilitates deeper sleep)

	• N3 sleep (SWS)→ delta waves (resetting of synapses, neurohumoral homeostasis, release of growth	
	hormone, glymphatic system function	
13:36	Pathologic Wakefulness/ Atypical Sleep?	
	Not consistent with "normal" EEG patterns	
14:25	Do EEG Changes During Delirium Reflect Damage or a Healing Process?	
1	• Escalating severity of sepsis encephalopathy (see emergence of slower waves- theta, delta)	
15:09	Markers of Sleep Pressure During Wakefulness are Associated with Delirium Features	
	• Awake theta (sleep pressure)	
16.20	Occipital alpha (posterior dominant rhythm)	
16:30	Is Delirium a Disorder of Sleep and Wakefulness?	
	• Does delirium consist of intrusions of sleep processes into wakefulness to heal ischemic, metabolic, or	
17:07	inflammatory insults? Approaches to Probe Polationshing Potween Delivium and Sleen Polationshing	
17.07	 <u>Approaches to Probe Relationships Between Delirium and Sleep Relationships</u> Actigraphy watches to measure 	
	 Actigraphy watches to measure Wearables (can get really complex) 	
17:57	Associations Between Sleep Disturbances on Delirium	
17.57	Meta-analysis	
	 Preoperative sleep disturbance was associated with a 3 to 5 time risk of delirium 	
19:34	Sleep Structural Measures and Delirium Outcomes	
19.01	• $2017 \text{ study} \rightarrow \text{sleep EEG on postoperative day 1}$	
	 Found that greater sleep time was associated with lower delirium severity 	
	• 2021 study \rightarrow found that greater sleep efficiency was associated with a potential effect of delirium risk	
	(but not statistically significant due to a small sample size)	
21:26	Actigraphy Measures and Postoperative Delirium Outcomes	
	• Intact/no delirium had greater movement during day relative to night compared to those with	
	hypoactive delirium	
	 Looking at number of awakenings and wakefulness after sleep onset (WASO) 	
22:12	Contributions of Obstructive Sleep Apnea Revisited	
	 Could contribute to blood brain barrier and brain physiology that could contribute to delirium 	
	• Mixed results and very limited evidence about obstructive sleep apnea playing a role in post-operative	
	neurocognitive disorders	
22:52	Non-pharmacologic and Pharmacologic Interventions Targeting Sleep	
	• Sleep hygiene	
	Melatonin/receptor agonists	
	Orexin receptor antagonists	
	• Dexmedetomidine	
22.26	Sleep slow wave or sleep spindle promotion?	
23:36	A Few of Many Outstanding Questions	
	 Do deficiencies in preoperative sleep constitute risk factors for postoperative delirium across a broad normation? 	
	population?What are the important measures of sleep that are protective factors for conferring protection and	
	mitigating injury?	
	 What are molecules/neurons/circuits that are involved in delirium pathophysiology and sleep/immune 	
	system cross-talk? Can we intervene on sleep microstructure to disrupt the processes?	
24:25	Conclusions	
	Postoperative delirium is an important clinical problem	
	• Sleep, a fundamental process for promoting healing, is a potential target for improving delirium	
	outcomes. More work is needed to evaluate associations at a larger scale	

	Sleep microstructure has associated physiologic benefits
	• Pharmacologic and non-pharmacologic approaches to improve delirium outcomes through modulation
	of sleep structure are under development
25:40	Our Objective? To Understand: How did we get here? Where are we going? (Melissa Knauert)
	• ICU delirium→ sleep and (finally) circadian disruption→ outcomes→ treatment
28:13	Delirium in the (medical) ICU is common and challenging
	• Risk factors: sedatives, age, dementia, prior coma, pre-ICU emergency surgery/trauma, APACHE
	severity of illness scores, ASA score
	• Prevalence: 50 to 80% on the medical ICU
	Outcomes: impact on cognition, hospital LOS, mortality
20.11	Treatment: limited pharmacologic treatment; sleep and mobility bundles recommended
29:11	Sleep in the ICU is Severely Disrupted
20.50	• Cycle: Impaired daytime function → short duration → poor quality → abnormal timing
30:58	ICU Sleep Disruption is Associated with Poor Outcomes
	Poor sleep is associated with delirium
	• Delirium is associated with poor sleep and decreased melatonin levels
21.52	Poor sleep is associated with an increased risk of death
31:53	<u>Getting unstuck from the sleep opportunity perspective</u>
	Add environmental control and/or cluster care to avoid overnight interruptions
32:31	Necessary but not sufficient The timing and dynation of clean is controlled by the 2 process model
52:51	 <u>The timing and duration of sleep is controlled by the 2-process model</u> Sleep drive "S" vs. Wake drive "C"
	 Sleep drive 'S 'vs. wake drive 'C In tandem, synchronicity, balancing out
34:10	Circadian Rhythms are (also) abnormal in the ICU
51.10	(left) measured body temperature
	 (right) measured serum melatonin (critically ill are more delayed)
35:44	Using continuous heartrate date from telemetry to estimate circadian phase (diurnal variation)
	• Looked to see if aligned, misaligned in terms of circadian rhythm or if they lacked a circadian
	variation
37:27	ICU sleep and circadian disruption has many domains
	• Quality of wake, daytime function, perceived sleep, sleep timing, sleep duration, circadian alignment,
	circadian amplitude, sleep continuity, sleep architecture, sleep regularity
38:01	Circadian framework suggests key targets for sleep promotion and beyond
	• Photic cue: light (day-night) → central clock → nonphotic cues, peripheral clocks, improved function
39:17	Where does this potential lead us
	Sleep bundles likely improve delirium outcomes
	• Scoping review: 20 studies of bundled care, sleep measures, delirium measures, study design,
	outcomes
	 Eye masks and ear plugs may improve delirium outcomes Scoping review: 5 studies of eye masks, ear plugs, sleep measures, delirium measures, study
	design, outcomes
	Bright light therapy?? Delirium outcomes
	 Scoping review: 5 light studies, sleep and circadian measures, delirium measures, study
	design, outcomes
	Melatonin??? Delirium outcomes
	• Scoping review: 8 studies melatonin rx, sleep and circadian measures, delirium measures,
	study design, outcomes
	Other pharma??? Delirium outcomes
	 Scoping review: 11 pharma studies, outcomes

43:20	Gaps and Challenges	
	Mixed interventions	
	Mis-timed or mis-dosed interventions	
	Challenging sleep and circadian measurement	
	Varied outcome measures	
43:57	Light	
	Timing, duration, intensity, spectra, history	
44:05	Where does this potential lead us daytime light as a case study	
	 Non-circadian light patterns are presentdim daytime light is a key problem 	
	ICU light is artificial	
45:45	Can we arrive at a best practice for light intervention	
	Patients are likely delayed	
	• Daytime 4 or 8 hour block bright light	
	• 10,000 lux at source	
	High blue light content, e.g. 5000 Kelvin	
	Nighttime minimal light	
	Light and spectra monitoring	
46:44	Where does this potential lead us other zeitgebers	
	 Non-photic cues: sleep & exercise/mobility, feeding timing 	
47:30	The immediate future of ICU Sleep and Circadian Research	
	Low hanging fruit	
	\circ TX: light, sleep, feeding & mobility \rightarrow improve: delirium, sleep, metabolism, strength	
	• Moonshot(s)	
	 Large scale and/or bedside measures, peripheral clock measures, pharmacotherapy 	
48:42	Questions and Answers	