EEG Delirium Assessment: Evolving Research & Clinical Roles Presenters: Eval Kimchi, MD, PhD and Gen Shinozaki, MD

	a st
Time	Section
01:39	Delirium is a complex mind/brain syndrome
	• How to identify delirium? (main methods: DSM-5 and CAM)
	• Limitations: in routine practice, many cases of delirium go unrecognized
	• Complex, but not Random (predisposing factors and precipitating factors)
03:55	Brain-Based Delirium Measurement?
	• EEG as a biomarker of delirium and delirium severity
	• EEG results of someone without and someone with delirium (differences in wave shapes)
	Clinical EEG Slowing Correlates with Delirium Severity
	• Generalized theta or delta slowing was associated with delirium
	• EEG Slowing reflects delirium more than arousal
	• EEG Slowing is present in patients with Hypoactive and Hyperactive Delirium
08:08	EEG Slowing Correlates with Clinical Outcomes
00.00	• Patients with EEG slowing tend to stay longer in the hospital and patients with clinical delirium also
	tend to stay longer in the hospital
	 Patients with EEG slowing tend to have worse clinical outcomes at discharge and patients with
	delirium also tend to have worse clinical outcomes
	• Mortality: in this study cohort, only those who developed EEG slowing died
09:50	What about EEG features other than slowing?
	• Routine Clinical EEG Interpretation: looking for any abnormalities in background rhythms
	• These rhythms are important for states of arousal
	• Usually look for discharges (Epilepsy)
	• Visual EEG-Based Grading of Delirium Severity
	• 404 patient cohort receiving EEG for Altered Mental Status
	• Most visual EEG features are associated with someone's delirium severity (VE-CAM-S)
	• VE-CAM-S is correlated with mortality in the hospital and up to 3 months
13:35	What about EEG features that are hard to see?
	Machine learning EEG delirium severity prediction
	• List of EEG features that are now computational in nature and not visual
	E-CAM-S: EEG Confusion Assessment Method Severity Score
	• Cannot make a clinical diagnosis based on this alone
	• Importance of variability of EEG features over time
	• Variability of slowing over time, etc. (the visual is showing standard deviations)
	• Spatial Topography of Delirium Pathophysiology?
	• Front to back brain axis was associated more with a differential rate of delirium than the
	hemispheres right to left
	 Can predict delirium severity based on the electrode pairs
	• Antero-Posterior Topography of Delirium: as the antero-posterior distance between the
	electrodes grows larger the correlation with delirium severity grows
	• Matches with quantitative data
19:45	Organization of Delirium Pathophysiology
	 Slowing is the single most informative EEG feature for delirium (biomarker)
	 Visual or quantitative EEG features beyond slowing may help predict delirium severity
	 The variability of EEG features over time may help predict delirium severity
	Delirium pathophysiology may particularly involve anterior-posterior cortical brain networks
21:14	Some EEG Advantages & Limitations
	• Advantages

	• Applicable at the bedside
	• Reflects core delirium features
	 Validity across phenotypes (hypoactive & hyperactive)
	 Quantitative data
	• High temporal resolution
	Limitations
	• Something is placed on the patient
	• Spatial limitations (samples large brain regions, sample primarily superficial cortex)
	• Limited etiologic information
	• Traditionally requires expertise (placement of EEG, interpretation of EEG)
25:17	Game-changing approach for delirium: Novel EEG algorithm for detection and outcome prediction
25:35	Publications
25:48	Question
	• Why do we measure blood pressure?—look for at risk people to do something to help them
	• How about glucose?
	• Imagination: think of a family member who may be admitted to a hospital
27.05	The CAM-ICI
27.05	Traditional FFC
27.29	Delirium can be detected by a traditional EEG
	• But not practical for every nt even with high risk
	• But, not practical for every preven with high fisk
	• Technician peeds to place multiple leads
	• Nourology specialist to interpret
	5 Red ology specialist to interpret
	• EEG findings for definition $(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
	\circ EEG findings are "diffuse slowing" = slow wave (delta-theta) across all 20 leads
	No need for 20 leads to detect diffuse slowing
	• Only a few leads are enough
	It is proven through systematic evaluation of many EEG pairs
	• Used in other areas
	• Anesthesiology (monitoring for depth of anesthesia, BIS monitor, Entropy, etc.)
	• ECT machine (monitoring for seizure activities)
29:44	Delirium EEG Study
	• To test if a simplified EEG device can detect delirium among elderly high risk patients
	 To test if a simplified device can detect delirium before clinical identification
	• 20 leads vs. 2 leads
	Study design and participants
	• Study design prospective observational study, no intervention
	 Simple EEG device monitoring twice a day
	 Digital signal processing algorithm
	 DRS, DOSS, and CAM-ICU twice a day
	• Study population (2016-2019)
	 Initial two cohorts at high risk for delirium (orthopedic surgery pts and older adult
	general medicine pts)
	 Demographics of study cohort
	• Device: "Palm-sized" device and put a few electrodes on forehead
31:46	EEG signals and spectral density analysis
	• Example of data
	• BSEEG score—time series: the higher you go, there is more slow waves
	• Comparing delirium case to non-delirium case
33:08	Initial group analysis from 45 cases

	• Can see the difference between delirium and non-delirium
	ROC analysis from test dataset
	\circ Chose BSEEG score of 1.44 as the cut off (positive >1.44, negative <1.44)
	Validation 1 from inpatient
	• Validation 2 from ER
	Validation 3 from ECT
	• ECT case monitoring over 2 hours
34:40	New device tested
	• More user friendly and simpler and had a thumb sized one
	• Validation 5 with a new device BSEEG score can quantify severity
35:10	Can EEG predict delirium onset?
	Negative case
	• Positive case (EEG score changes 2 days earlier)
36:03	Delirium, poor outcomes, and EEG
	• Infographic of this relationship \rightarrow goes back to the question if EEG can predict outcomes?
36:29	Outcomes and BSEEG score
	• LOS and BSEEG scores were significantly correlated
	• Discharge outcome and BSEEG scores were significantly associated
	• Delirium and mortality
	• Can EEG predict mortality?
	 BSEEG low vs. BSEEG high
	Power of objective phenotyping
	 Clinical category vs. EEG category
	• Dose dependent effect (BSEEG low vs. BSEEG middle vs. BSEEG high)
	• EEG x Delirium category and Mortality (purple= Delirious and EEG positive; blue= delirious but
	EEG negative; orange= not delirious and EEG negative; green=not delirious but EEG positive)
	• Consistent with hospital mortality \rightarrow EEG matters!
40:47	"Diffuse slowing" in EEG finding and mortality
	Normal vs. diffuse slowing
41:25	Dementia and BSEEG
	• Orange= no dementia & low BSEEG; Green= no dementia & high BSEEG; Blue= dementia & low
	BSEEG; Purple= dementia & high BSEEG
42:15	Sepsis and BSEEG
	Was able to differentiate mortality, dose-dependent manner
42:45	Another replication with a new device
	• Validated with 1,077 subjects
	All delirious patients are not the same
	• Motor subtype?
	 Hypo-active vs. Hyper-active
44:07	Circling back to beginning of Gen's talk
	Imagination of family member in hospital
	Question:
	• Why do we measure blood pressure?
	• How about glucose?
44.27	• Based on this data why not BSEEG?
44:27	Summary Division 1
	Delirium is a dangerous condition
	• Early detection is vital for better outcomes
	Current methods are not practical

	Simplified EEG can detect delirium early
	Easy to use for busy hospital settings
	• This approach would benefit patients, physicians, hospitals, and health economy
44:50	Future Directions
	• I envision this BSEEG score to be used as "next vital sign". Used every day, every patient, in the
	hospitals, clinics, and nursing homes.
	• A thumb-size, newer device being tested
	• Real goal is to bring this technology to the patients
	• Peri-operative protocol in 2030? (getting baseline BSEEG and then post-op BSEEG)
46:32	Questions and Answers