Neuroimaging and Delirium

5th Annual Delirium Boot Camp
November 2017

Michele Cavallari, M.D., Ph.D.
Center for Neurological Imaging, Department of Radiology, BWH, HMS
MRI: What Do We Measure?
Historical Perspective

- **500 BC**
 - "phrenitis" (Hippocrates)

- **1st Century AD**
 - "delirium" (Celsius)

- **13th Century**
 - "delirium phrenesis caused by disease of the brain and its membranes" (Bartholomeus Anglicus)

- **1918**
 - ventriculography and pneumoencephalography (Walter Dandy)

- **1927**
 - cerebral arteriogram (Moniz)

- **1973**
 - CT applied to clinical diagnosis (Hounsfield)

- **MID 1970s**
 - first MRI (Lauterbur)
Role of Neuroimaging

DELIRIUM (syndrome)

Predisposing Factors
Vulnerability

What Happens During Delirium
(Methodologically Challenging)

Long-term Effect

1. QUANTIFY
1. LOCALIZE
Acquisition

- Safety
 - PMK, metal, kidney function for contrast-MRI
- Motion
 - ≥30 min exam
- $$$
 - Price/hour
- Physicist
 - Non-conventional sequences

Analysis

- Image Analysts
 - Supervised postdoc/RA
- Computer Scientist
 - Non-conventional analyses, improve workflows
- Time-consuming
 - Human-interactive tools, quality control
Is MRI the Right Tool to Answer Your Scientific Question?
SAGES
Successful AGing after Elective Surgery
Successful AGing after Elective Surgery

Study Participants

• Older Individuals ≥70 years
• Dementia-free
• Non-cardiac Elective Surgery
Successful AGing after Elective Surgery

Study Design and Aims

DELIRIUM

N=146
(32 with delirium)

PREDISPOSING SUBSTRATES

Analysis controlled for Age, Sex, Vascular Comorbidity, Baseline Cognitive Performance

N=126
(28 with delirium)

LONG TERM EFFECT

time

T0 (surgery)

T1 (1 year)
Successful AGing after Elective Surgery

MRI Measures

• STRUCTURAL (T1, T2, FLAIR)
 – Global Brain Atrophy
 – Hippocampal Volume
 – Cortical Thickness
 – White Matter Hyperintensity Volume

• PERFUSION (Arterial Spin Labeling)
 – Cerebral Blood Flow

• DIFFUSION TENSOR IMAGING (DTI)
 – Microstructural Brain Abnormalities
SAGES Study / MRI Measures

- STRUCTURAL (T1, T2, FLAIR)
 - Global Brain Atrophy
 - Hippocampal Volume
 - Cortical Thickness
 - White Matter Hyperintensity Volume
Brain atrophy and white-matter hyperintensities are not significantly associated with incidence and severity of postoperative delirium in older persons without dementia

Michele Cavallaria, Tammy T. Hshiehb,c, Charles R.G. Guttmanna, Long H. Ngod, Dominik S. Meiera, Eva M. Schmittc, Edward R. Marcantoniod, Richard N. Jonese,f, Cyrus M. Kosarc, Tamara G. Fongc,g, Daniel Pressg, Sharon K. Inouyec,d, David C. Alsoph,*, on behalf of the SAGES Study Group

Table 2
Quantitative presurgical MRI measures of brain parenchymal damage

<table>
<thead>
<tr>
<th></th>
<th>All subjects (n = 146)</th>
<th>No delirium (n = 114)</th>
<th>Delirium (n = 32)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMH volume (cc)</td>
<td>11.27 ± 9.46</td>
<td>11.55 ± 9.94</td>
<td>10.24 ± 7.59</td>
<td>0.710a</td>
</tr>
<tr>
<td>BPV (cc)</td>
<td>1013.91 ± 113.11</td>
<td>1018.71 ± 114.32</td>
<td>996.79 ± 108.68</td>
<td>0.334a</td>
</tr>
<tr>
<td>Hippocampal volume (cc)</td>
<td>3.24 ± 0.43</td>
<td>3.23 ± 0.43</td>
<td>3.25 ± 0.47</td>
<td>0.862a</td>
</tr>
<tr>
<td>ICV (cc)</td>
<td>1416.71 ± 158.51</td>
<td>1417.88 ± 163.73</td>
<td>1410.05 ± 138.23</td>
<td>0.805a</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD. p-values refer to group comparison no delirium versus delirium by the statistical tests as indicated.

Key: BPV, brain parenchymal volume; ICV, intracranial cavity volume; MRI, magnetic resonance imaging; WMH, white-matter hyperintensity.

a Kruskal–Wallis test.

b Student t test.
White-Matter Hyperintensities Predict Delirium After Cardiac Surgery

Yutaka Hatano, M.D., Jin Narumoto, M.D., Ph.D., Keisuke Shibata, M.D., Ph.D.,
Teruyuki Matsuoka, M.D., Shogo Taniguchi, M.D., Yuzuru Hata, M.D.,
Kei Yamada, M.D., Ph.D., Hitoshi Yaku, M.D., Ph.D., Kenji Fukui, M.D., Ph.D.

Association of pre-operative brain pathology with post-operative delirium in a cohort of non-small cell lung cancer patients undergoing surgical resection

James C. Root1,2*, Kane O. Pryor2, Robert Downey1,2, Yesne Alici1,2, Marcus L. Davis3, Andrei Holodny1,2,
Beatriz Korc-Grodzicki1,2 and Tim Ahles1,2

The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: The VISIONS cohort magnetic resonance imaging study

Max L. Gunther, PhD; Alessandro Morandi, MD, MPH; Erin Krauskopf, BS; Pratik Pandharipande, MD, MSc;
Timothy D. Girard, MD, MSc; James C. Jackson, PsyD; Jennifer Thompson, MPH; Ayumi K. Shintani, PhD;
Sunil Guevarghese, MD, MSc; Russell R. Miller III, MD, MPH; Angelo Canonico, MD; Kristen Merkle, BA;
Christopher J. Cannistraci, MS; Baxter P. Rogers, PhD; J. Chris Gatenby, PhD; Stephan Heckers, MD, MSC;
John C. Gore, PhD; Ramona O. Hopkins, PhD; E. Wesley Ely, MD, MPH; for the VISIONS Investigation
(VISualizing ICU SurvivOrs Neuroradiological Sequelae)

Pre-existing cerebral infarcts as a risk factor for delirium after coronary artery bypass graft surgery

Sumi Otomo*, Kengo Maekawa, Tomoko Goto, Tomoko Baba and Atsushi Yoshitake
Alzheimer's-related cortical atrophy is associated with postoperative delirium severity in persons without dementia

Annie M. Racine a,b,c,*, Tamara G. Fong a,b,d, Thomas G. Travison a,b, Richard N. Jones e, Yun Gou a, Sarinnapha M. Vasunilashorn b,f, Edward R. Marcantonio b,f, David C. Alsop b,g, Sharon K. Inouye a,b,f, Bradford C. Dickerson b,c,h,1

Fig. 1. Brain regions comprising the AD signature: (A, yellow) medial temporal cortex, (B, light blue) inferior temporal gyrus, (C, red) temporal pole, (D, purple) angular gyrus, (E, green) superior frontal gyrus, (F, orange) superior parietal lobule, (G, chartreuse) supramarginal gyrus, (H, aqua) precuneus, and (I, dark blue) inferior frontal sulcus. Abbreviation: AD, Alzheimer's disease. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Table 2
Association between the AD signature and delirium incidence (CAM)

<table>
<thead>
<tr>
<th>Model covariates</th>
<th>Odds ratio (SE)</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>1.03 (0.05)</td>
<td>0.95, 1.13</td>
<td>0.40</td>
</tr>
<tr>
<td>Female sex</td>
<td>1.55 (0.67)</td>
<td>0.66, 3.62</td>
<td>0.32</td>
</tr>
<tr>
<td>AD signature (mm)</td>
<td>1.15 (0.18)</td>
<td>0.84, 1.57</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Table 3
Association between the AD signature and delirium severity (CAM-S peak or CAM-S sum) in the delirium group only (N = 32)

<table>
<thead>
<tr>
<th>Model covariates</th>
<th>Regression coefficient (SE)</th>
<th>95% CI</th>
<th>p-value</th>
<th>(R^2)</th>
<th>(R^2) change<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) CAM-S Peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (y)</td>
<td>-0.03 (0.2)</td>
<td>-0.36, 0.29</td>
<td>0.84</td>
<td>0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>Female sex</td>
<td>0.43 (1.4)</td>
<td>-2.41, 3.27</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD signature</td>
<td>-1.2 (0.5)</td>
<td>-2.20, -0.27</td>
<td>0.014</td>
<td>0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>(B) CAM-S Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (y)</td>
<td>0.01 (0.6)</td>
<td>-1.31, 1.32</td>
<td>0.99</td>
<td>0.31</td>
<td>0.25</td>
</tr>
<tr>
<td>Female sex</td>
<td>-2.3 (5.6)</td>
<td>-13.83, 9.30</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD signature</td>
<td>-6.0 (1.9)</td>
<td>-9.83, -2.13</td>
<td>0.004</td>
<td>0.31</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Preliminary Longitudinal Structural MRI Analysis

- **Accrual of Global Brain Atrophy and WMH Volume** over time across the entire cohort
- **No association** of Global Brain Atrophy and WMH accrual with delirium occurrence and severity
- WMH volume increase was mainly a result of expansion of existing lesions. No evidence of new embolic type infarcts potentially resulting from surgery
SAGES Study / MRI Measures

- **STRUCTURAL (T1, T2, FLAIR)**
 - Global Brain Atrophy
 - Hippocampal Volume
 - Cortical Thickness
 - White Matter Hyperintensities Volume

- **PERFUSION (Arterial Spin Labeling)**
 - Cerebral Blood Flow

- **DIFFUSION TENSOR IMAGING (DTI)**
 - Microstructural Brain Abnormalities
Cerebral blood flow MRI in the nondemented elderly is not predictive of post-operative delirium but is correlated with cognitive performance

Tammy T Hsieh¹,², Weiying Dai³,⁴, Michele Cavallari⁵, Charles RG Guttmann⁵, Dominik S Meier⁵, Eva M Schmitt², Bradford C Dickerson⁶, Daniel Z Press⁷, Edward R Marcantonio⁸, Richard N Jones²,⁹, Yun Ray Gou², Thomas G Travison²,⁸, Tamara G Fong²,⁷, Long Ngo⁸, Sharon K Inouye²,⁸,*, David C Alsop³,⁸,* and on behalf of the SAGES Study Group

Figure 3. Brain regions with CBF significantly associated with the General Cognitive Performance composite measure. A voxel threshold of p < 0.01 and a corrected cluster threshold of p < 0.05 were applied. Colors indicate the t statistic for the suprathreshold cluster overlaid on the SPM canonical T1 image.

Figure 2. Brain regions with CBF significantly associated with the Hopkins Verbal Learning Test – Revised (HVLT-R) total scores. A voxel threshold of p < 0.01 and a corrected cluster threshold of p < 0.05 were applied. Colors indicate the t statistic for the suprathreshold cluster overlaid on the SPM canonical T1 image.
• Reduced flow and metabolism in the posterior cingulate is the earliest functional predictor of cognitive impairment and Alzheimer’s disease.

• The absence of an association between blood flow in this region and delirium argues against a role for incipient AD in the risk of delirium in elderly subjects without dementia.

Fig 4. Significant correlations between decreased regional blood flow and severity of disease as measured by the decrease in Mini-Mental State Examination score. Significant results are overlaid in color on top of a surface rendering of the brain. Yellow colors are the most significant and dark red are the least significant.

(Alsop et al., Ann Neurol 2000)
SAGES Study / MRI Measures

• STRUCTURAL (T1, T2, FLAIR)
 – Global Brain Atrophy
 – Hippocampal Volume
 – White Matter Hyperintensities Volume

• PERFUSION (Arterial Spin Labeling)
 – Cerebral Blood Flow

• DIFFUSION TENSOR IMAGING (DTI)
 – Microstructural Brain Abnormalities
DTI Abnormalities Indicate Brain Microstructural Damage
Neural substrates of vulnerability to postsurgical delirium as revealed by presurgical diffusion MRI

Michele Cavallari,¹ Weiying Dai,²,³ Charles R. G. Guttmann,¹ Dominik S. Meier,¹ Long H. Ngo,⁴ Tammy T. Hshieh,⁵,⁶ Amy E. Callahan,² Tamara G. Fong,⁶,⁷ Eva Schmitt,⁶ Bradford C. Dickerson,⁸,⁹,¹⁰ Daniel Z. Press,⁷ Edward R. Marcantonio,⁴ Richard N. Jones,¹¹ Sharon K. Inouye⁴,⁶,* and David C. Alsop²,* on behalf of the SAGES Study Group

<table>
<thead>
<tr>
<th></th>
<th>Delirium incidence</th>
<th>Delirium severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AD</td>
<td>FA</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>ns</td>
<td>↓↓<sup>L</sup></td>
</tr>
<tr>
<td>Cingulum</td>
<td>ns</td>
<td>↓↓<sup>B</sup></td>
</tr>
<tr>
<td>Corpus callosum</td>
<td>ns</td>
<td>↓↓</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Internal capsule</td>
<td>ns</td>
<td>↓↓<sup>L</sup></td>
</tr>
<tr>
<td>Occipital lobe</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Parietal lobe</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Temporal lobe</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Thalamus</td>
<td>ns</td>
<td>↓↓<sup>L</sup></td>
</tr>
</tbody>
</table>
Longitudinal diffusion changes following postoperative delirium in older people without dementia
WHAT WE LEARNED

• Microstructural tissue damage captured by **Diffusion MRI** underlies the occurrence of delirium.
• The spatial distribution and predominance of diffusion findings over dementia sensitive techniques like gray matter atrophy and perfusion suggest that **delirium is associated more with age related decline in white matter pathways** than neuronal loss and reduced perfusion or metabolism.
• Implications regarding the pathogenesis of delirium can come from the **regional specificity** of the abnormalities associated with delirium.
 – Baseline DTI abnormalities predisposing to delirium showed **two separate phenomena** (AD-like, and frontal/parietal)
 – Longitudinal DTI abnormalities seem more **diffused**, but the observed effect was too small to localize abnormalities with confidence
IMPORTANT FACTORS

Baseline scan

Control for confounders

Inclusion/exclusion criteria
 – Generalizability
 – Sensitivity/specificity
FUTURE WORK

• Relationship between delirium and dementia
 – long-term follow-up cognitive data

• Further explore the regional specificity of the relationship between brain damage and delirium
 – Regional WMH
 – Structural/Functional Connectivity (DTI Tractography, Resting-State fMRI)