

Precision Medicine for Delirium

Towia Libermann, Ph. D.

Associate Professor of Medicine

Director, BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology

Center and DF/HCC Proteomics Core Div. of Interdisciplinary Medicine and Biotechnology Beth Israel Deaconess Medical Center

Harvard Medical School

DF/HCC dana-farber / harvard cancer center

What is Precision Medicine?

Precision Medicine

The Promise: Advanced Molecular Diagnostic Will Tailor Medical Management & Treatment Based on the Individual Characteristics of Each Patient

> Optimized Therapeutic Benefit Less Adverse Reactions

Presented at NIDUS Delirium Boot Camp 2017, Posted with permission.

The end of "one-size-fits-all"?

New Disease Concepts Transform Medicine

Exceptional Success When Treatment Matched to Driver Mutation

Sequencing enables patient-specific recommendation of targeted therapies with improved outcome

With Precision Medicine

Each patient receives right medicine

Normal EGFR

•No response

Without Precision Medicine Some benefit, many do not

Lung Cancer Patients

Sequencing

Mutant EGFR, Normal K-Ras/N-Ras • Response

Treatment with EGFR Inhibitor

Mutant EGFR, Mutant K-Ras/N-Ras • Shorter survival

Approaches for Biomarker Discovery and Precision Medicine for Delirium

Posted with permission.

SAGES Study Design

- Plasma collection at 4 timepoints (before, during and after)
 - pre-operation (PREOP)
 - post-operation (post-anesthesia care unit) (PACU)
 - post-operation day 2 (POD2)
 - post-operation day 30 (POD30)
- Matched case:control design
 - delirium versus no delirium
 - 6 matching factors
- Carefully selected patient population (N =560; 24% delirium rate)
 - dementia-free
 - <u>></u>70 years
 - elective, non-cardiac surgery

• Biomarkers to assess

- Risk
- Guide diagnosis
- Management
- Pathogenesis
- Objective: Identify reliable blood-based postoperative delirium biomarkers, delirium pathophysiology & new therapeutic targets
- Targeted and untargeted biomarker discovery & validation

What defines a good biomarker?

- Specificity to the disease
- Reliability
 - low false positive rate
 - low false negative rate
- Does it inform about the underlying biological processes involved?
 - Can we predict new therapeutic targets based on revealed pathophysiology?

Potential Uses for Delirium Biomarkers

- Risk predictor:
 - Measurable before delirium onset
 - Identifies individuals at risk
- Disease marker:
 - Changes (up or down) with delirium onset
 - Returns to pre-surgery levels with delirium resolution
- Prognostic marker:
 - Measurable before or after delirium onset
 - Alterations in measured level is proportional to long term "consequences"

Types of Molecules Used as Biomarkers

- <u>Proteins</u>/peptides
 - Post-translational modifications (PTMs)
- Metabolites
- Lipids
- Cells
- DNA sequence
 - Entire genome
 - Specific genes, SNPs

Protein Biomarkers for Delirium Why use plasma?

- Minimally invasive
- Easily obtained
- Widely used clinically

- A source for good representation of proteins released from many tissues in the body
- Plasma, serum, and urine are being used in the diagnosis of many diseases
- Opportunities for home diagnostics

But: CSF may be more informative

Targeted Proteomics

Journals of Gerontology: Medical Sciences cite as: J Gerontol A Biol Sci Med Sci, 2015, Vol. 70, No. 10, 1289–1295 doi:10.1093/gerona/glv083 Advance Access publication July 27, 2015

Research Article SAGES study paper

Cytokines and Postoperative Delirium in Older Patients Undergoing Major Elective Surgery

Sarinnapha M. Vasunilashorn,^{1,2,3*} Long Ngo,^{1,3*} Sharon K. Inouye,^{1,2,3} Towia A. Libermann,^{1,3} Richard N. Jones,^{2,5} David C. Alsop,^{2,4} Jamey Guess,³ Sandra Jastrzebski,⁷ Janet E. McElhaney,⁸ George A. Kuchel,^{7**} and Edward R. Marcantonio^{1,2,3**}

¹Harvard Medical School, Boston, Massachusetts. ²Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts. ³Department of Medicine, and ⁴Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts. ⁵Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island. ⁷UConn Center on Aging, University of Connecticut Health Center, Farmington. ⁸Advanced Medical Research Institute of Canada, Sudbury, Ontario, Canada.

Patient Characteristics In 2 Matched Cohorts (Discovery And Replication) And Pooled Cohort used for Biomarker Verification

	Discovery (39 pairs)		Replication (36 pairs)		
	No			No	
	Delirium	Delirium	Delirium	Delirium	
Variable	(n=39)	(n=39)	(n=36)	(n=36)	
Age (M, SD)	77.3 (5.0)	76.8 (4.7)	78.0 (4.4)	77.6 (4.2)	
Female (%)	54	54	58	58	
GCP (M, SD)	55.2 (5.6)	56.4 (5.6)	53.7 (5.0)	54.6 (5.1)	
Type of surgery (%)					
Orthopedic	92	92	83	83	
Vascular	5	5	6	6	
Gastrointestinal	3	3	11	11	
Vascular comorbidity					
(%)	38	38	50	50	
ApoE ε4 carrier (%)	13	13	28	28	

Pooled Cohort (75 Pairs)

GCP=general cognitive performance, a composite measure of neuropsychological measures reflecting cognitive domains vulnerable to delirium.

ApoE= presence of an ApoE ε 4 allele (i.e., ApoE ε carrier) has been associated with increased risk of Alzheimer's Disease. Vascular comorbidity: present if patient had a myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular disease, hemiplegia, diabetes, and diabetes with end organ damage.

Luminex Analysis of 12 Cytokines in Plasma

Median paired difference between delirium and matched control

	rooled Collott					
Cytokine (pg/mL)	PREOP	PACU	POD2	POD1M		
IL-1β	0.26	0.28	0.31	0.27		
IL-2	0.99*	0.77*	1.07**	0.73*		
IL-4	7.13	0.54	-1.56	-2.32		
IL-5	0.19	0.19	-0.52	0.57		
IL-6	1.01	7.17*	39.35**	0.49		
IL-8	0.86	0.68	0.89	-0.18		
IL-10	0.00	0.10	0.27	-0.11		
IL-12	-2.64	-1.73	-2.88	-4.24*		
IFN-y	0.00	0.00	0.00	0.03		
GMCSF	-0.58	-0.49	-0.45	-0.22		
TNF-α	2.12	2.52	3.22	3.10*		
VEGF	3.50	-0.34	4.10*	0.83		

Pooled Cohort

p < .05; p < .01.

Presented at NIDUS Delirium Boot Camp 2017, Posted with permission.

Untargeted Proteomics

SAGES study paper

Higher C-Reactive Protein Levels Predict Postoperative Delirium in Older Patients Undergoing Major Elective Surgery: A Longitudinal Nested Case-Control Study

Simon T. Dillon, Sarinnapha M. Vasunilashorn, Long Ngo, Hasan H. Otu, Sharon K. Inouye, Richard N. Jones, David C. Alsop, George A. Kuchel, Eran D. Metzger, Steven E. Amold, Edward R. Marcantonio, and Towia A. Libermann

© 2016 Society of Biological Psychiatry 1 Biological Psychiatry III, 2016; LIII-III www.sobp.org/journal

http://dx.doi.org/10.1016/j.biopsych.2016.03.2098

Global Proteomics using Mass Spectrometry

Quantitative Shotgun Proteomics for Unbiased Biomarker Discovery

Posted with permission.

Biomarker Discovery Phase iTRAQ Quantitative Mass Spectrometry Identifies Consistently Higher Levels of CRP in Patients who Develop Delirium

Con 1-5 PREOP Del 1 PREOP Del 2 PREOP Del 3 PREOP Del 3 PREOP Del 5 PREOP Con 1-5 PACU Del 1 PACU Del 2 POD2 Del 3 POD1M Del 2 POD1M Del 2 POD1M Del 3 POD1M

Annotation

C-reactive protein (CRP) Heparin cofactor 2 (SERPIND1) Pigment epithelium-derived factor (SERPINF1) Coagulation factor XII (F12) Serum amyloid P-component (APCS) Tetranectin (CLEC3B) Extracellular matrix protein 1(ECM1) CD44 antigen (CD44) Gelsolin (GSN) Glutathione peroxidase 3 (GPX3)

Heat map of iTRAQ relative quantitation for 10 proteins in 5 matched case-control samples across four timepoints (PREOP, PACU, POD2 and POD1M)

Biomarker Verification Phase

ELISA of CRP in Whole Matched Case-Control Cohort Confirms Statistically Significant Higher CRP Levels in Patients with Delirium

Time-specific median of paired differences (MPD) of ELISA CRP concentrations between delirium cases and no-delirium controls at 4 timepoints in the discovery, replication, and pooled cohorts

	Discovery		Replication			Pooled			
Time of	f (39 pairs)		(36 pairs)			(75 pairs)			
Blood Draw	MPD (mg/L)	IQ range	P-value	MPD (mg/L)	IQ range	P-value	MPD (mg/L)	IQ range	P-value
PREOP	1.97	(-1.02, 7.75)	0.02	0.29	(-1.68, 9.59)	0.13	0.56	(-1.61, 7.89)	<0.01
PACU	2.83	(-2.29, 10.68)	0.06	2.22	(-0.91, 7.68)	0.01	2.53	(-1.57, 10.33)	<0.01
POD2	71.97	(5.05, 139.82)	<0.01	35.18	(-30.42, 88.90)	0.04	63.76	(-22.29, 126.17)	<0.01
POD1M	2.72	(-1.85, 7.16)	0.06	-0.66	(-3.83, 2.49)	0.63	1.1	(-3.17, 5.45)	0.18

MPD=Median of paired differences (delirium case minus no-delirium control)

ELISA=enzyme-linked immunosorbent assay

IQ=interquartile

PREOP= preoperative, PACU= postanesthesia care unit, POD2=postoperative day 2, POD1M=30 days postoperation p-values obtained from nonparametric signed-tank test. Bold indicates significant at p<.05 level

Median CRP Concentrations by Delirium Status at 4 Timepoints in Pooled Cohort (75 Matched Pairs)

CLINICAL INVESTIGATION

High C-Reactive Protein Predicts Delirium Incidence, Duration, and Feature Severity After Major Noncardiac Surgery

Sarinnapha M. Vasunilashorn, PhD,^{a,b,c} Simon T. Dillon, PhD,^{b,d} Sharon K. Inouye, MD, MPH,^{b,c,e} Long H. Ngo, PhD,^{a,b} Tamara G. Fong, MD, PhD,^{c,f} Richard N. Jones, ScD,^{c,g} Thomas G. Travison, PhD,^{b,c,e,b} Eva M. Schmitt, PhD,^c David C. Alsop, PhD,^{b,i} Steven D. Freedman, MD, PhD,^{b,j} Steven E. Arnold, MD,^{b,k} Eran D. Metzger, MD,^{b,c,l} Towia A. Libermann, PhD,^{b,d,*} and Edward R. Marcantonio, MD, SM^{a,b,c,e,*}

> JAGS 65:e109-e116, 2017 © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society

	Delirium Incidence	Delirium Duration (per day) ^a	Sum CAM-S (per point) ^a	_
CRP measure (mg/L)	RR (95% CI)	Days (95%CI)	Score (95% CI)	_
CRP PREOP				
Quartiles				Associations of CRP
Q1 (≤0.95)	Reference	Reference	Reference	
Q2 (0.95-2.56)	1.4 (0.8-2.3)	0.3 (0.2-0.5) ^b	1.5 (0.9-2.1) ^c	across the entire SAGES
Q3 (2.56-6.39)	1.7 (1.0b-2.7)	0.3 (0.2-0.5) ^b	2.5 (1.8-3.2) ^c	cohort with
Q4 (≥6.39)	1.8 (1.2-2.9)	0.4 (0.2-0.5) ^b	3.6 (2.9-4.3) ^b	
p-trend ^d	<.01	<.01	<.01	postoperative delirium,
High-risk cutpoint ^e				delirium duration, &
≥3 vs. <3	1.5 (1.1-2.1)	0.2 (0.1-0.4) ^b	2.6 (2.1-3.2) ^b	
CRP POD2				delirium feature severity
Quartiles				(sum of all CAM-S
Q1 (≤127.53)	Reference	Reference	Reference	· .
Q2 (127.53-177.05)	1.1 (0.6-1.7)	0.1 (-0.1-0.2)	1.2 (0.6-1.8) ^c	scores)
Q3 (177.05-235.73)	1.5 (1.0º-2.3)	0.2 (0.0 ^h -0.4) ^c	3.5 (2.9-4.2) ^b	
Q4 (≥235.73)	1.5 (1.0 ¹ -2.4)	0.2 (0.0 ⁱ -0.4) ^c	4.5 (3.8-5.2) ^b	
p-trend ^d	0.02	0.02	<.01	

Summary

- IL-6 levels increase in patients experiencing delirium
- CRP is elevated before surgery and is a potential predictive biomarker for delirium, delirium duration, & delirium severity
- Pre-Inflammatory status prior to surgery may increase risk of postoperative delirium
- CRP and IL-6 involved in many diseases
- Can we identify more specific and novel biomarkers for delirium?

Challenges in Delirium Biomarker Discovery (Serum/Plasma/CSF)

Proteins from various

tissues/cells released into

Blood Test for Delirium?

Posted with permission.

Levels of proteins in plasma

Molecular & Cellular Proteomics 2003, Anderson and Anderson 2 (1): 50

12-13 Logs Differences in Protein Expression Presented at NIDUS Delirium Boot Camp 2017,

ers

Posted with permission

Ideal Proteomics Platform for Protein Biomarker Discovery: SOMAscan

- Highly multiplexed, sensitive, specific, quantitative proteomic tool
- Measures simultaneously 1305 proteins/sample in only 65µl of human serum/plasma/urine; 6µg of protein from tissue/cell lysate/exosomes
- Dynamic range >8 logs (femtomolar to micromolar)
- Reproducibility (~5% median %CV)
- Protein-capture SOMAmer (Slow Off-rate Modified Aptamer) reagents
- SOMAmers: protein affinity-binding reagents and unique nucleotide sequences recognizable by specific DNA hybridization probes

Within-Person Stability of Plasma Protein Expression Patterns Over 1 Year

Nurses Health Study Cohort

- Each patient clusters with itself across the 2 time points
- Blood drawn from a patient at different time points is very similar
- Every person has a different fingerprint of proteins

ICC or Spearman r ≥0.4 for 91% of proteins

Presented at NIDUS Delirium Boot Camp 2017, Posted with permission.

Differences in BMI Easily Captured by SOMAscan:

Elevated Inflammatory Proteins Correlate with BMI

- BMI <25 Kg/m²
- BMI \geq 25 to <30 Kg/m²
- BMI \geq 30 Kg/m²

Heatmap of Proteins Comparing Individuals with BMI <25 vs. ≥25 to <30 vs. ≥30 kg/m²

SOMAscan perfectly differentiates plasma proteins before (PREOP) and after surgery (POD2)

Stress & Inflammation linked proteins are increased by surgery

POD2 vs. PREOP (BH corrected paired t-test p<0.01) L1OXV: 100%

Annotation	Annotation-1
SL000550	Plasma serine protease inhibitor
SL000251	Alpha-2-HS-glycoprotein
SL008381	Cathepsin F
SL000508	Lymphotoxin alpha2:beta1
SL010328	Mediator of RNA polymerase II transcription subunit 1
SL021043	Growth/differentiation factor 11/8
SL014092	Cell adhesion molecule-related/down-regulated by oncogenes
SL004876	Kallistatin
SL004183	Cadherin-3
SL004742	Afamin
SL006777	Fetuin-B
SL000019	Apolipoprotein A-I
SL000541	Plasminogen
SL000268	Angiostatin
SL004060	Endothelin-converting enzyme 1
SL000566	Retinol-binding protein 4
SL000358	Coagulation factor VII
SL003300	C-C motif chemokine 16
SL007237	Dual specificity mitogen-activated protein kinase kinase 4
SL000426	Fibronectin
SL016555	Dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 11A
SL000325	Complement component C9
SL011770	Leucine carboxyl methyltransferase 1
SL004477	Protein S100–A9
SL000640	Nidogen-1
SL000598	Thrombopoietin
SL003302	C-C motif chemokine 23
SL003301	Ck-beta-8-1
SL003341	Fibrinogen gamma chain
SL004536	Hepcidin
SL002528	Phospholipase A2, membrane associated
SL000424	Fibrinogen
SL000248	Alpha-1-antichymotrypsin
SL003309	Lipopolysaccharide-binding protein
SL000051	C-reactive protein
SL000572	Serum amyloid A-1 protein
SL000249	Alpha-1-antitrypsin
SL000310	Complement C1r subcomponent
SL003340	Chitinase-3-like protein 1
SL012774	Cysteine-rich with EGF-like domain protein 1

SOMAscan Ideal for Neuroinflammation & Immune System Biomarker Discovery

- Covers large portion of immune system proteins
 - CD antigens
 - Cytokines
 - Chemokines
 - Soluble Receptors
 - Coagulation
 - Complement
 - Checkpoints
- Covers many inflammation and neuroinflammation proteins
 - Cytokines
 - Chemokines
 - Soluble Receptors
 - Acute Phase Proteins

Postoperative Delirium Plasma Biomarker Discovery

SOMAscan Accurately Discriminates Between Delirium & No Delirium at PREOP

Hierarchical Clustering of 12 Proteins

Principal Component Analysis of 12 Proteins

Delirium Metabolome/Lipidome Platforms

Targeted Metabolomics

AB/SCIEX 5500 QTRAP triple quadrupole

Untargeted Metabolomics/Lipidomics

- Thermo Scientific Q Exactive HF/Plus
- Ultra fast & ultra sensitive •

MetaboAnalyst Pathway Enrichment

5,000-20,000 metabolites >2000 lipids

- High resolution •
- Extremely fast scan speeds
- Quantitative

Metabolomics Analysis of Plasma Samples at POD2 Reveals Delirium-Specific Alterations

Lipidomics Analysis of 12 Matched Pairs of Plasma Samples at PREOP and POD2 Reveals Delirium-Specific Alterations

PREOP

POD2

Delirium Immunome Platform: CyTOF Mass Cytometry Massively Multi-Parametric Detection System for Single Cell ImmunoPhenotyping

Key Advantages of CyTOF

- Phenotypically & functionally profile all immune cell subsets at single-cell resolution for up to 100 different cell surface and intracellular signaling proteins by using antibodies coupled to metal isotopes
- Discrete isotope peaks without significant overlap, enabling higher multiplexing than FACS
- Innovative software tools (viSNE,, SPADE, Citrus) incorporate pattern recognition approaches to enable detection of finely tuned cell subsets (clusters of single cells with similar expression patterns)

Future Delirium Biomarkers will be Multi-Modal

Combination of:

- Lipids
- Metabolites
- Proteins (expression, isoforms, PTMs)
- RNAs (mRNA, miRNA, IncRNA, splicing)
- DNAs (CNVs, SNPs, methylation)
- Single Immune Cells

The Next Revolution: Single Use Health & Wellness Chip on Laptop or iPhone

Benefit: Earlier Detection, Precise Diagnosis, & Targeted Treatment

Improved Outcomes

